zoukankan      html  css  js  c++  java
  • 【刷题-LeetCode】304. Range Sum Query 2D

    1. Range Sum Query 2D - Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

    Range Sum Query 2D
    The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

    Example:

    Given matrix = [
      [3, 0, 1, 4, 2],
      [5, 6, 3, 2, 1],
      [1, 2, 0, 1, 5],
      [4, 1, 0, 1, 7],
      [1, 0, 3, 0, 5]
    ]
    
    sumRegion(2, 1, 4, 3) -> 8
    sumRegion(1, 1, 2, 2) -> 11
    sumRegion(1, 2, 2, 4) -> 12
    

    Note:

    1. You may assume that the matrix does not change.
    2. There are many calls to sumRegion function.
    3. You may assume that row1 ≤ row2 and col1 ≤ col2.

    同一维数组一样,先预处理

    定义数组(mathrm{S}[i][j])表示前 i-1 行前 j-1 列交叉区域的和

    • 预处理阶段:(mathrm{S}[i][j] =mathrm{M}[i-1][j-1]mathrm{S}[i][j-1]+mathrm{S}[i-1][j] - mathrm{S}[i-1][j-1])

    • 查询阶段:(mathrm{sum\_of\_region}[r1, c1, r2, c2] = mathrm{S}[r2+1][c2+1]-mathrm{S}[r1][c2+1]-mathrm{S}[r2+1][c1]+mathrm{S}[r1][c1])

    class NumMatrix {
    public:
        vector<vector<int>>S;
        NumMatrix(vector<vector<int>>& matrix) {
            int m = matrix.size();
            if(m > 0){
                int n = matrix[0].size();
                S.resize(m+1, vector<int>(n+1, 0));
                for(int i = 0; i < m; ++i){
                    for(int j = 0; j < n; ++j){
                        S[i+1][j+1] = matrix[i][j] + S[i][j+1]+S[i+1][j] - S[i][j];
                    }
                }
            }
        }
        
        int sumRegion(int row1, int col1, int row2, int col2) {
            if(S.size() == 0)return 0;
            return S[row2+1][col2+1] - S[row1][col2+1] - S[row2+1][col1] + S[row1][col1];
        }
    };
    
  • 相关阅读:
    《人月神话》阅读笔记03
    《人月神话》阅读笔记02
    《人月神话》阅读笔记01
    《构建之法》阅读笔记03
    《构建之法》阅读笔记02
    蚂蚁通信框架实践
    红黑树
    漫画算法:什么是红黑树
    Java中的锁分类与使用
    JAVA CAS原理深度分析
  • 原文地址:https://www.cnblogs.com/vinnson/p/13380471.html
Copyright © 2011-2022 走看看