zoukankan      html  css  js  c++  java
  • 轮询锁在使用时遇到的问题与解决方案!

    当我们遇到死锁之后,除了可以手动重启程序解决之外,还可以考虑是使用顺序锁和轮询锁,这部分的内容可以参考我的上一篇文章,这里就不再赘述了。然而,轮询锁在使用的过程中,如果使用不当会带来新的严重问题,所以本篇我们就来了解一下这些问题,以及相应的解决方案。

    问题演示

    当我们没有使用轮询锁之前,可能会出现这样的问题:

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class DeadLockByReentrantLock {
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    lockA.lock(); // 加锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 1:等待获取 B...");
                        lockB.lock(); // 加锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                }
            });
            t2.start(); // 运行线程
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从上述结果可以看出,此时程序中出现了线程相互等待,并尝试获取对方(锁)资源的情况,这就是典型的死锁问题了。

    简易版轮询锁

    当出现死锁问题之后,我们就可以使用轮询锁来解决它了,它的实现思路是通过轮询的方式来获取多个锁,如果中途有任意一个锁获取失败,则执行回退操作,释放当前线程拥有的所有锁,等待下一次重新执行,这样就可以避免多个线程同时拥有并霸占锁资源了,从而直接解决了死锁的问题,简易版的轮询锁实现如下:

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SolveDeadLockExample2 {
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1(使用轮询锁)
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    // 调用轮询锁
                    pollingLock(lockA, lockB);
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                }
            });
            t2.start(); // 运行线程
        }
    
        /**
         * 轮询锁
         */
        private static void pollingLock(Lock lockA, Lock lockB) {
            // 轮询锁
            while (true) {
                if (lockA.tryLock()) { // 尝试获取锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 1:等待获取 B...");
                        if (lockB.tryLock()) { // 尝试获取锁
                            try {
                                System.out.println("线程 1:获取到锁 B!");
                            } finally {
                                lockB.unlock(); // 释放锁
                                System.out.println("线程 1:释放锁 B.");
                                break;
                            }
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                        System.out.println("线程 1:释放锁 A.");
                    }
                }
                // 等待一秒再继续执行
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从上述结果可以看出,当我们在程序中使用轮询锁之后就不会出现死锁的问题了,但以上轮询锁也并不是完美无缺的,下面我们来看看这个轮询锁会有什么样的问题?

    问题1:死循环

    以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。

    反例

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SolveDeadLockExample {
    
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1(使用轮询锁)
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    // 调用轮询锁
                    pollingLock(lockA, lockB);
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        // 如果此处代码未执行,线程 2 一直未释放锁资源
                        // lockB.unlock(); 
                    }
                }
            });
            t2.start(); // 运行线程
        }
    
        /**
         * 轮询锁
         */
        public static void pollingLock(Lock lockA, Lock lockB) {
            while (true) {
                if (lockA.tryLock()) { // 尝试获取锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 1:等待获取 B...");
                        if (lockB.tryLock()) { // 尝试获取锁
                            try {
                                System.out.println("线程 1:获取到锁 B!");
                            } finally {
                                lockB.unlock(); // 释放锁
                                System.out.println("线程 1:释放锁 B.");
                                break;
                            }
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                        System.out.println("线程 1:释放锁 A.");
                    }
                }
                // 等待一秒再继续执行
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。

    优化版

    针对以上死循环的情况,我们可以改进的思路有以下两种:

    1. 添加最大次数限制:如果经过了 n 次尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询(失败策略可以是记录日志或其他操作);
    2. 添加最大时长限制:如果经过了 n 秒尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询。

    以上策略任选其一就可以解决死循环的问题,出于实现成本的考虑,我们可以采用轮询最大次数的方式来改进轮询锁,具体实现代码如下:

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SolveDeadLockExample {
    
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1(使用轮询锁)
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    // 调用轮询锁
                    pollingLock(lockA, lockB, 3);
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        // 线程 2 忘记释放锁资源
                        // lockB.unlock(); // 释放锁
                    }
                }
            });
            t2.start(); // 运行线程
        }
    
        /**
         * 轮询锁
         *
         * maxCount:最大轮询次数
         */
        public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
            // 轮询次数计数器
            int count = 0;
            while (true) {
                if (lockA.tryLock()) { // 尝试获取锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                        System.out.println("线程 1:等待获取 B...");
                        if (lockB.tryLock()) { // 尝试获取锁
                            try {
                                System.out.println("线程 1:获取到锁 B!");
                            } finally {
                                lockB.unlock(); // 释放锁
                                System.out.println("线程 1:释放锁 B.");
                                break;
                            }
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                        System.out.println("线程 1:释放锁 A.");
                    }
                }
    
                // 判断是否已经超过最大次数限制
                if (count++ > maxCount) {
                    // 终止循环
                    System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                    return;
                }
    
                // 等待一秒再继续尝试获取锁
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从以上结果可以看出,当我们改进之后,轮询锁就不会出现死循环的问题了,它会尝试一定次数之后终止执行。

    问题2:线程饿死

    我们以上的轮询锁的轮询等待时间是固定时间,如下代码所示:

    // 等待 1s 再尝试获取(轮询)锁
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    

    这样在特殊情况下会造成线程饿死的问题,也就是轮询锁一直获取不到锁的问题,比如以下示例。

    反例

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SolveDeadLockExample {
    
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1(使用轮询锁)
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    // 调用轮询锁
                    pollingLock(lockA, lockB, 3);
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    while (true) {
                        lockB.lock(); // 加锁
                        System.out.println("线程 2:获取到锁 B!");
                        try {
                            System.out.println("线程 2:等待获取 A...");
                            lockA.lock(); // 加锁
                            try {
                                System.out.println("线程 2:获取到锁 A!");
                            } finally {
                                lockA.unlock(); // 释放锁
                            }
                        } finally {
                            lockB.unlock(); // 释放锁
                        }
                        // 等待一秒之后继续执行
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            });
            t2.start(); // 运行线程
        }
    
        /**
         * 轮询锁
         */
        public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
            // 循环次数计数器
            int count = 0;
            while (true) {
                if (lockA.tryLock()) { // 尝试获取锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                        System.out.println("线程 1:等待获取 B...");
                        if (lockB.tryLock()) { // 尝试获取锁
                            try {
                                System.out.println("线程 1:获取到锁 B!");
                            } finally {
                                lockB.unlock(); // 释放锁
                                System.out.println("线程 1:释放锁 B.");
                                break;
                            }
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                        System.out.println("线程 1:释放锁 A.");
                    }
                }
    
                // 判断是否已经超过最大次数限制
                if (count++ > maxCount) {
                    // 终止循环
                    System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                    return;
                }
    
                // 等待一秒再继续尝试获取锁
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从上述结果可以看出,线程 1(轮询锁)一直未成功获取到锁,造成这种结果的原因是:线程 1 每次轮询的等待时间为固定的 1s,而线程 2 也是相同的频率,每 1s 获取一次锁,这样就会导致线程 2 会一直先成功获取到锁,而线程 1 则会一直处于“饿死”的情况,执行流程如下图所示:

    image.png

    优化版

    接下来,我们可以将轮询锁的固定等待时间,改进为固定时间 + 随机时间的方式,这样就可以避免因为获取锁的频率一致,而造成轮询锁“饿死”的问题了,具体实现代码如下:

    import java.util.Random;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class SolveDeadLockExample {
        private static Random rdm = new Random();
    
        public static void main(String[] args) {
            Lock lockA = new ReentrantLock(); // 创建锁 A
            Lock lockB = new ReentrantLock(); // 创建锁 B
    
            // 创建线程 1(使用轮询锁)
            Thread t1 = new Thread(new Runnable() {
                @Override
                public void run() {
                    // 调用轮询锁
                    pollingLock(lockA, lockB, 3);
                }
            });
            t1.start(); // 运行线程
    
            // 创建线程 2
            Thread t2 = new Thread(new Runnable() {
                @Override
                public void run() {
                    while (true) {
                        lockB.lock(); // 加锁
                        System.out.println("线程 2:获取到锁 B!");
                        try {
                            System.out.println("线程 2:等待获取 A...");
                            lockA.lock(); // 加锁
                            try {
                                System.out.println("线程 2:获取到锁 A!");
                            } finally {
                                lockA.unlock(); // 释放锁
                            }
                        } finally {
                            lockB.unlock(); // 释放锁
                        }
                        // 等待一秒之后继续执行
                        try {
                            Thread.sleep(1000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            });
            t2.start(); // 运行线程
        }
    
        /**
         * 轮询锁
         */
        public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
            // 循环次数计数器
            int count = 0;
            while (true) {
                if (lockA.tryLock()) { // 尝试获取锁
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                        System.out.println("线程 1:等待获取 B...");
                        if (lockB.tryLock()) { // 尝试获取锁
                            try {
                                System.out.println("线程 1:获取到锁 B!");
                            } finally {
                                lockB.unlock(); // 释放锁
                                System.out.println("线程 1:释放锁 B.");
                                break;
                            }
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lockA.unlock(); // 释放锁
                        System.out.println("线程 1:释放锁 A.");
                    }
                }
    
                // 判断是否已经超过最大次数限制
                if (count++ > maxCount) {
                    // 终止循环
                    System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                    return;
                }
    
                // 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁
                try {
                    Thread.sleep(300 + rdm.nextInt(8) * 100); // 固定时间 + 随机时间
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    

    以上代码的执行结果如下:

    image.png

    从上述结果可以看出,线程 1(轮询锁)加入随机等待时间之后就不会出现线程饿死的问题了。

    总结

    本文我们介绍了轮询锁的用途,用于解决死锁问题,但简易版的轮询锁在某些情况下会造成死循环和线程饿死的问题,因此我们对轮询锁进行了优化,给轮询锁加入了最大轮询次数,以及随机轮询等待时间,这样就可以解决因为引入轮询锁而造成的新问题了,这样就可以愉快的使用它来解决死锁的问题了。

    参考 & 鸣谢

    《Java并发编程实战》

    并发原创文章推荐

    1. 线程的 4 种创建方法和使用详解!
    2. Java中用户线程和守护线程区别这么大?
    3. 深入理解线程池 ThreadPool
    4. 线程池的7种创建方式,强烈推荐你用它...
    5. 池化技术到达有多牛?看了线程和线程池的对比吓我一跳!
    6. 并发中的线程同步与锁
    7. synchronized 加锁 this 和 class 的区别!
    8. volatile 和 synchronized 的区别
    9. 轻量级锁一定比重量级锁快吗?
    10. 这样终止线程,竟然会导致服务宕机?
    11. SimpleDateFormat线程不安全的5种解决方案!
    12. ThreadLocal不好用?那是你没用对!
    13. ThreadLocal内存溢出代码演示和原因分析!
    14. Semaphore自白:限流器用我就对了!
    15. CountDownLatch:别浪,等人齐再团!
    16. CyclicBarrier:人齐了,司机就可以发车了!
    17. synchronized 优化手段之锁膨胀机制!
    18. synchronized 中的 4 个优化,你知道几个?
    19. ReentrantLock 中的 4 个坑!
    20. 图解:为什么非公平锁的性能更高?
    21. 死锁的 4 种排查工具!
    22. 死锁终结者:顺序锁和轮询锁!

    关注公号「Java中文社群」查看更多有意思、涨知识的 Java 并发文章。

    关注下面二维码,订阅更多精彩内容。
    微信打赏
    关注公众号(加好友):

  • 相关阅读:
    selenium 常见操作,使用 pywin32库 进行上传操作
    selenium 常见操作,使用 js 操作-日期框及文本框
    selenium 常见操作,js操作-将元素滚动到页面可见区域
    selenium 常见操作,使用 Keys 类来进行键盘的按键操作
    oracle性能诊断sql
    浏览器是如何处理页面元素的Download?
    websphere启动报:Could not resolve placeholder 'hibernate.hbm2ddl.auto' in string value "${hibernate.hbm2ddl.auto}"
    websphere部署不能发布war文件,提示“配置库中已存在应用程序
    websphere gc策略调整
    oracle表结构表数据导入导出
  • 原文地址:https://www.cnblogs.com/vipstone/p/15208754.html
Copyright © 2011-2022 走看看