zoukankan      html  css  js  c++  java
  • ACM hdu 1028 Ignatius and the Princess III

    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 11692    Accepted Submission(s): 8275


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4 10 20
     
    Sample Output
    5 42 627

    没有分析,这就是明显用母函数的最简单的题,用模板就可以过

     1 #include <iostream>
     2 using namespace std;
     3 const int _max = 10001;
     4 int c1[_max], c2[_max];
     5 int main()
     6 {
     7 
     8     int nNum;   
     9     int i, j, k;
    10     while(cin >> nNum)
    11     {
    12         for(i=0; i<=nNum; ++i)
    13         {
    14             c1[i] = 1;
    15             c2[i] = 0;
    16         }
    17         for(i=2; i<=nNum; ++i)
    18         {
    19             for(j=0; j<=nNum; ++j) 
    20                 for(k=0; k+j<=nNum; k+=i)  
    21                 {
    22                     c2[j+k] += c1[j];
    23                 }
    24             for(j=0; j<=nNum; ++j) 
    25                 c1[j] = c2[j];
    26                 c2[j] = 0;
    27             }
    28         }
    29         cout << c1[nNum] << endl;
    30     }
    31     return 0;
    32 }
    母函数模板
  • 相关阅读:
    bzoj1432_[ZJOI2009]Function
    Luogu1681_ 最大正方形II
    初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
    [bzoj2456] mode
    初等数论-Base-1(筛法求素数,欧拉函数,欧几里得算法)
    小程序之Tab切换
    vue-axios基本用法
    vue-过渡动画
    vue-router实例
    永恒之蓝漏洞利用复现
  • 原文地址:https://www.cnblogs.com/vivider/p/3670296.html
Copyright © 2011-2022 走看看