zoukankan      html  css  js  c++  java
  • POJ

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input
    Line 1: Three space-separated integers: N, F, and D
    Lines 2.. N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

    Output
    Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes
    Sample Input
    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3
    Sample Output
    3
    Hint
    One way to satisfy three cows is:
    Cow 1: no meal
    Cow 2: Food #2, Drink #2
    Cow 3: Food #1, Drink #1
    Cow 4: Food #3, Drink #3
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

    题解:

    拆点(cow,cow`),建立超级源点和超级汇点,超级源点连接所有的food,food连接cow,cow连接cow`,cow`连接drink,所有drink又连接超级汇点。然后就是基础的DINIC跑一遍。

    代码:

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <stack>
    
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const int MAXN = 410;//F:100 + D:100 + N:100*2
    
    struct Edge{
    	int to,value,rev;
    	Edge(){}
    	Edge(int a,int b,int c):to(a),value(b),rev(c){}
    };
    
    vector<Edge> E[MAXN];
    
    inline void Add(int from,int to,int value){
    	E[from].push_back(Edge(to,value,E[to].size()));
    	E[to].push_back(Edge(from,0,E[from].size()-1));
    }
    
    int deep[MAXN];
    int iter[MAXN];
    
    bool BFS(int from,int to){
    	memset(deep,-1,sizeof deep);
    	deep[from] = 0;
    	queue<int> Q;
    	Q.push(from);
    	while(!Q.empty()){
    		int t = Q.front();
    		Q.pop();
    		for(int i=0 ; i<E[t].size() ; ++i){
    			Edge& e = E[t][i];
    			if(e.value > 0 && deep[e.to] == -1){
    				deep[e.to] = deep[t] + 1;
    				Q.push(e.to);
    			}
    		}
    	}
    	return deep[to] != -1;
    }
    
    int DFS(int from,int to,int flow){
    	if(from == to || flow == 0)return flow;
    	
    	for(int& i=iter[from] ; i<E[from].size() ; ++i){
    		Edge& e = E[from][i];
    		if(e.value > 0 && deep[e.to] == deep[from]+1){
    			int nowflow = DFS(e.to,to,min(flow,e.value));
    			if(nowflow > 0){
    				e.value -= nowflow;
    				E[e.to][e.rev].value += nowflow;
    				return nowflow;
    			}
    		}
    	}
    	return 0;
    }
    
    
    int Dinic(int from,int to){
    	int sumflow = 0;
    	while(BFS(from,to)){
    		memset(iter,0,sizeof iter);
    		int mid;
    		while((mid=DFS(from,to,INF)) > 0)sumflow += mid;
    	}
    	return sumflow;
    }
    
    int main(){
    	
    	int N,F,D;
    	int Fi,Di;
    	while(scanf("%d %d %d",&N,&F,&D)!=EOF){
    		//固定超级源点为0,超级汇点为MAXN-1 
    		for(int i=1 ; i<=F ; i++)Add(0,i+200,1); 
    		for(int i=1 ; i<=D ; i++)Add(i+300,MAXN-1,1);
    		for(int _=1 ; _<=N ; ++_){
    			scanf("%d %d",&Fi,&Di);
    			Add(_,_+100,1);//拆点 
    			for(int i=0 ; i<Fi ; ++i){
    				int t;
    				scanf("%d",&t);
    				Add(t+200,_,1);
    			}
    			for(int i=0 ; i<Di ; ++i){
    				int t;
    				scanf("%d",&t);
    				Add(_+100,t+300,1);
    			}
    		}
    		printf("%d
    ",Dinic(0,MAXN-1));
    		for(int i=0 ; i<MAXN ; ++i)E[i].clear();
    	}
    	
    	return 0;
    }

  • 相关阅读:
    Android 开发 框架系列 OkHttp拦截器
    Android 开发 框架系列 OkHttp文件上传功能实现(含断点续传)
    Android 开发 框架系列 OkHttp使用详解
    Android 开发 框架系列 OkHttp文件下载功能实现(含断点续传)
    Git 如何使用ssh上传或者同步/下载项目到github
    Git 获取项目git clone
    System.arraycopy复制数组方法解释
    Android开发 AAC的ADTS头解析[转载]
    Android开发 多媒体提取器MediaExtractor详解_将一个视频文件分离视频与音频
    Android开发 多媒体提取器MediaExtractor详解_入门篇
  • 原文地址:https://www.cnblogs.com/vocaloid01/p/9514089.html
Copyright © 2011-2022 走看看