zoukankan      html  css  js  c++  java
  • CodeForces

    Time limit
    2000 ms
    Memory limit
    262144 kB


    Harry came to know from Dumbledore that Salazar Slytherin's locket is a horcrux. This locket was present earlier at 12 Grimmauld Place, the home of Sirius Black's mother. It was stolen from there and is now present in the Ministry of Magic in the office of Dolorous Umbridge, Harry's former Defense Against the Dark Arts teacher.

    Harry, Ron and Hermione are infiltrating the Ministry. Upon reaching Umbridge's office, they observed a code lock with a puzzle asking them to calculate count of magic numbers between two integers l and r (both inclusive).

    Harry remembered from his detention time with Umbridge that she defined a magic number as a number which when converted to a given base b, all the digits from 0 to b - 1 appear even number of times in its representation without any leading zeros.

    You have to answer q queries to unlock the office. Each query has three integers bi, li and ri, the base and the range for which you have to find the count of magic numbers.

    Input

    First line of input contains q (1 ≤ q ≤ 105) — number of queries.

    Each of the next q lines contain three space separated integers bi, li, ri (2 ≤ bi ≤ 10, 1 ≤ li ≤ ri ≤ 1018).

    Output

    You have to output q lines, each containing a single integer, the answer to the corresponding query.

    Examples

        Input
    2
    2 4 9
    3 1 10
    
        Output
    1
    2
    
        Input
    2
    2 1 100
    5 1 100
    
        Output
    21
    4

    Note

    In sample test case 1, for first query, when we convert numbers 4 to 9 into base 2, we get:

    • 4 = 1002,
    • 5 = 1012,
    • 6 = 1102,
    • 7 = 1112,
    • 8 = 10002,
    • 9 = 10012.

    Out of these, only base 2 representation of 9 has even number of 1 and 0. Thus, the answer is 1.

    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    
    ll board[70];
    ll dp[70][15][2][2][2][2][2][2][2][2][2][2];
    //从左到右分别对应数位,进制,0,1,2,3,4,5,6,7,8,9的奇偶状态。 
    
    ll DFS(ll base,ll pos,ll A,ll B,ll C,ll D,ll E,ll F,ll G,ll H,ll I,ll J,bool limit,bool lead){	
    	if(pos == -1)return !A && !B && !C && !D && !E && !F && !G && !H && !I && !J;
    	if(!limit && !lead && dp[pos][base][A][B][C][D][E][F][G][H][I][J]!=-1)
                return dp[pos][base][A][B][C][D][E][F][G][H][I][J];
    	
    	ll up = limit?board[pos]:base-1;
    	ll ans = 0;
    	for(ll _=0 ; _<=up ; ++_){
    		if(lead && _==0)ans += DFS(base,pos-1,A,B,C,D,E,F,G,H,I,J,limit && _==up,true);
    		else switch(_){
    			case 0:
    				ans += DFS(base,pos-1,A^1,B,C,D,E,F,G,H,I,J,limit && _==up,false);
    				break;
    			case 1:
    				ans += DFS(base,pos-1,A,B^1,C,D,E,F,G,H,I,J,limit && _==up,false);
    				break;
    			case 2:
    				ans += DFS(base,pos-1,A,B,C^1,D,E,F,G,H,I,J,limit && _==up,false);
    				break;
    			case 3:
    				ans += DFS(base,pos-1,A,B,C,D^1,E,F,G,H,I,J,limit && _==up,false);
    				break;
    			case 4:
    				ans += DFS(base,pos-1,A,B,C,D,E^1,F,G,H,I,J,limit && _==up,false);
    				break;
    			case 5:
    				ans += DFS(base,pos-1,A,B,C,D,E,F^1,G,H,I,J,limit && _==up,false);
    				break;
    			case 6:
    				ans += DFS(base,pos-1,A,B,C,D,E,F,G^1,H,I,J,limit && _==up,false);
    				break;
    			case 7:
    				ans += DFS(base,pos-1,A,B,C,D,E,F,G,H^1,I,J,limit && _==up,false);
    				break;
    			case 8:
    				ans += DFS(base,pos-1,A,B,C,D,E,F,G,H,I^1,J,limit && _==up,false);
    				break;
    			case 9:
    				ans += DFS(base,pos-1,A,B,C,D,E,F,G,H,I,J^1,limit && _==up,false);
    				break;
    		}
    	} 
    	if(!limit && !lead)dp[pos][base][A][B][C][D][E][F][G][H][I][J] = ans;
    	return ans;
    }
    
    ll Solve(ll base,ll t){
    	ll pos = 0;
    	while(t){
    		board[pos++] = t%base;
    		t /= base;
    	}
    	return DFS(base,pos-1,0,0,0,0,0,0,0,0,0,0,true,true);
    }
    
    int main(){
    	
    	int T;
    	scanf("%d",&T);
    	ll b,l,r;
    	memset(dp,-1,sizeof(dp));
    	while(T--){
    		scanf("%lld %lld %lld",&b,&l,&r);
    		printf("%lld
    ",Solve(b,r)-Solve(b,l-1));
    	}
    	
    	return 0;
    }


  • 相关阅读:
    一个例子帮助理解正则表达式
    requestAnimationFrame兼容性扩展
    检测访问网页的浏览器呈现引擎、平台、Windows操作系统、移动设备和游戏系统
    手把手教你如何安装和使用Karma-Jasmine
    cesium随笔 — 隐藏三维场景下方版权信息
    cesium随笔 — 获取当前鼠标的经度、纬度、高度
    Cesium Language (CZML) 入门2 — CZML Content(CZML的内容)
    html初识
    MySQL终章
    MySQL表与表之间的关系详解
  • 原文地址:https://www.cnblogs.com/vocaloid01/p/9514134.html
Copyright © 2011-2022 走看看