Write the routines to do a “percolate up” and a “percolate down” in a binary min-heap.
Format of functions:
void PercolateUp( int p, PriorityQueue H );
void PercolateDown( int p, PriorityQueue H );
where int p is the position of the element, and PriorityQueue is defined as the following:
typedef struct HeapStruct *PriorityQueue;
struct HeapStruct {
ElementType *Elements;
int Capacity;
int Size;
};
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
#define MinData -1
typedef struct HeapStruct *PriorityQueue;
struct HeapStruct {
ElementType *Elements;
int Capacity;
int Size;
};
PriorityQueue Initialize( int MaxElements ); /* details omitted */
void PercolateUp( int p, PriorityQueue H );
void PercolateDown( int p, PriorityQueue H );
void Insert( ElementType X, PriorityQueue H )
{
int p = ++H->Size;
H->Elements[p] = X;
PercolateUp( p, H );
}
ElementType DeleteMin( PriorityQueue H )
{
ElementType MinElement;
MinElement = H->Elements[1];
H->Elements[1] = H->Elements[H->Size--];
PercolateDown( 1, H );
return MinElement;
}
int main()
{
int n, i, op, X;
PriorityQueue H;
scanf("%d", &n);
H = Initialize(n);
for ( i=0; i<n; i++ ) {
scanf("%d", &op);
switch( op ) {
case 1:
scanf("%d", &X);
Insert(X, H);
break;
case 0:
printf("%d ", DeleteMin(H));
break;
}
}
printf("
Inside H:");
for ( i=1; i<=H->Size; i++ )
printf(" %d", H->Elements[i]);
return 0;
}
/* Your function will be put here */
Sample Input:
9
1 10
1 5
1 2
0
1 9
1 1
1 4
0
0
Sample Output:
2 1 4
Inside H: 5 10 9
思路:
题目让实现最小堆的插入维护和删除维护。只要记住最小的在上面就行。
另外要注意down的时候可能只有一个儿子。
代码:
void PercolateDown( int p, PriorityQueue H )
{
if(p<<1 > H->Size)return;
int replace;
if(p<<1+1 <= H->Size)replace = (H->Elements[p<<1] < H->Elements[p<<1+1] ? p<<1 : p<<1+1);
else replace = p<<1;
if(H->Elements[replace] < H->Elements[p])
{
int mid = H->Elements[replace];
H->Elements[replace] = H->Elements[p];
H->Elements[p] = mid;
PercolateDown( replace, H );
}
}
void PercolateUp( int p, PriorityQueue H )
{
if(p == 1)return;
if(p&1)
{
if(H->Elements[(p-1)>>1] > H->Elements[p])
{
int mid = H->Elements[(p-1)>>1];
H->Elements[(p-1)>>1] = H->Elements[p];
H->Elements[p] = mid;
PercolateUp( (p-1)>>1, H );
}
}
else
{
if(H->Elements[p>>1] > H->Elements[p])
{
int mid = H->Elements[p>>1];
H->Elements[p>>1] = H->Elements[p];
H->Elements[p] = mid;
PercolateUp( p>>1, H );
}
}
}