分5种情况,模板转载自:http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b
题目大意:给你个简单多边形,和一个圆心在原点处的圆,求这个多边形与圆的重合部分的面积。
也就是这个意思了……
但是这看上去也太恶心了,怎么办?其实想一想就知道,我们平日求多边形面积用的就是三角形剖分,所以说我们应该化繁为简,通过求出来各三角形与圆的交,从而求出总面积。而且,剖分用的原点正好在圆心,这是很方便的一件事情。
现在问题就转化成一个顶点在圆心的三角形了。但是这才是麻烦的开始,除去退化情况,我们应该至少考虑到以下五种情况:
(一)三角形的两条边全部短于半径。
最方便了,不是么?
(二)三角形的两条边全部长于半径,且另一条边与圆心的距离也长于半径。
只需要求出扇形的面积即可。
(三)三角形的两条边全部长于半径,但另一条边与圆心的距离短于半径,并且垂足落在这条边上。
求出扇形的面积,再减去那个弓形的面积。也就是说再挖去一个扇形,补上一个三角形。
(四)三角形的两条边全部长于半径,但另一条边与圆心的距离短于半径,且垂足未落在这条边上。
与上一个很像……一开始我就在这里WA了很长时间。事实上只需求一个扇形。
(五)三角形的两条边一条长于半径,另外一条短于半径。
先求出交点,再剖成扇形和三角形求解。
代码:HDU 4404
View Code
#include <iostream> #include <cstdio> #include <cmath> #include <vector> #include <cstring> #include <algorithm> #include <string> #include <set> #include <functional> #include <numeric> #include <sstream> #include <stack> #define CL(arr, val) memset(arr, val, sizeof(arr)) #define REP(i, n)for((i) = 0; (i) < (n); ++(i)) #define FOR(i, l, h)for((i) = (l); (i) <= (h); ++(i)) #define FORD(i, h, l)for((i) = (h); (i) >= (l); --(i)) #define L(x)(x) << 1 #define R(x)(x) << 1 | 1 #define MID(l, r)(l + r) >> 1 #define Min(x, y)x < y ? x : y #define Max(x, y)x < y ? y : x #define E(x)(1 << (x)) #define iabs(x) (x) < 0 ? -(x) : (x) #define OUT(x)printf("%I64d\n", x) #define lowbit(x)(x)&(-x) #define Read()freopen("data.in", "r", stdin) #define Write()freopen("data.out", "w", stdout); const double eps = 1e-10; typedef long long LL; const int inf = ~0u>>2; using namespace std; inline double max (double a, double b) { if (a > b) return a; else return b; } inline double min (double a, double b) { if (a < b) return a; else return b; } inline int fi (double a) { if (a > eps) return 1; else if (a >= -eps) return 0; else return -1; } class Vector { public: double x, y; Vector (void) {} Vector (double x0, double y0) : x(x0), y(y0) {} double operator * (const Vector& a) const { return x * a.y - y * a.x; } double operator % (const Vector& a) const { return x * a.x + y * a.y; } Vector verti (void) const { return Vector(-y, x); } double length (void) const { return sqrt(x * x + y * y); } Vector adjust (double len) { double ol = len / length(); return Vector(x * ol, y * ol); } Vector oppose (void) { return Vector(-x, -y); } }; class point { public: double x, y; point (void) {} point (double x0, double y0) : x(x0), y(y0) {} Vector operator - (const point& a) const { return Vector(x - a.x, y - a.y); } point operator + (const Vector& a) const { return point(x + a.x, y + a.y); } }; class segment { public: point a, b; segment (void) {} segment (point a0, point b0) : a(a0), b(b0) {} point intersect (const segment& s) const { Vector v1 = s.a - a, v2 = s.b - a, v3 = s.b - b, v4 = s.a - b; double s1 = v1 * v2, s2 = v3 * v4; double se = s1 + s2; s1 /= se, s2 /= se; return point(a.x * s2 + b.x * s1, a.y * s2 + b.y * s1); } point pverti (const point& p) const { Vector t = (b - a).verti(); segment uv(p, p + t); return intersect(uv); } bool on_segment (const point& p) const { if (fi(min(a.x, b.x) - p.x) <= 0 && fi(p.x - max(a.x, b.x)) <= 0 && fi(min(a.y, b.y) - p.y) <= 0 && fi(p.y - max(a.y, b.y)) <= 0) return true; else return false; } }; double radius; point polygon[110]; double kuras_area (point a, point b, double cx, double cy) { point ori(cx, cy); int sgn = fi((b - ori) * (a - ori)); double da = (a - ori).length(), db = (b - ori).length(); int ra = fi(da - radius), rb = fi(db - radius); double angle = acos(((b - ori) % (a - ori)) / (da * db)); segment t(a, b); point h, u; Vector seg; double ans, dlt, mov, tangle; if (fi(da) == 0 || fi(db) == 0) return 0; else if (sgn == 0) return 0; else if (ra <= 0 && rb <= 0) return fabs((b - ori) * (a - ori)) / 2 * sgn; else if (ra >= 0 && rb >= 0) { h = t.pverti(ori); dlt = (h - ori).length(); if (!t.on_segment(h) || fi(dlt - radius) >= 0) return radius * radius * (angle / 2) * sgn; else { ans = radius * radius * (angle / 2); tangle = acos(dlt / radius); ans -= radius * radius * tangle; ans += radius * sin(tangle) * dlt; return ans * sgn; } } else { h = t.pverti(ori); dlt = (h - ori).length(); seg = b - a; mov = sqrt(radius * radius - dlt * dlt); seg = seg.adjust(mov); if (t.on_segment(h + seg)) u = h + seg; else u = h + seg.oppose(); if (ra == 1) swap(a, b); ans = fabs((a - ori) * (u - ori)) / 2; tangle = acos(((u - ori) % (b - ori)) / ((u - ori).length() * (b - ori).length())); ans += radius * radius * (tangle / 2); return ans * sgn; } } const double pi = acos(-1.0); int main () { //freopen("data.in", "r", stdin); int n; double area, x, y, cx, cy; double x0, y0, v0, th, t, g; double vx, vy; while(~scanf("%lf%lf%lf%lf%lf%lf%lf", &x0, &y0, &v0, &th, &t, &g, &radius)) { if(x0 == 0 && y0 == 0 && v0 == 0 && th == 0 && t == 0 && g == 0 && radius == 0) break; vx = v0*cos(pi*th/180.0); vy = v0*sin(pi*th/180.0); cx = x0 + vx*t; cy = y0 + (vy*t - 0.5*g*t*t); scanf("%d", &n); for(int i = 0; i < n; ++i) { scanf("%lf%lf", &x, &y); polygon[i] = point(x, y); } area = 0; for (int i = 0; i < n; i++) area += kuras_area(polygon[i], polygon[(i + 1) % n], cx, cy); printf("%.2f\n", fabs(area)); } return 0; }