zoukankan      html  css  js  c++  java
  • <math.h>与<float.h>

    (一) <math.h>

    <math.h>文件中已经定义了M_PI,如下所示,用户可以直接使用;

    //math.h
    ........................
    #if defined(_USE_MATH_DEFINES) && !defined(_MATH_DEFINES_DEFINED) #define _MATH_DEFINES_DEFINED /* Define _USE_MATH_DEFINES before including math.h to expose these macro * definitions for common math constants. These are placed under an #ifdef * since these commonly-defined names are not part of the C/C++ standards. */ /* Definitions of useful mathematical constants * M_E - e * M_LOG2E - log2(e) * M_LOG10E - log10(e) * M_LN2 - ln(2) * M_LN10 - ln(10) * M_PI - pi * M_PI_2 - pi/2 * M_PI_4 - pi/4 * M_1_PI - 1/pi * M_2_PI - 2/pi * M_2_SQRTPI - 2/sqrt(pi) * M_SQRT2 - sqrt(2) * M_SQRT1_2 - 1/sqrt(2) */ #define M_E 2.71828182845904523536 #define M_LOG2E 1.44269504088896340736 #define M_LOG10E 0.434294481903251827651 #define M_LN2 0.693147180559945309417 #define M_LN10 2.30258509299404568402 #define M_PI 3.14159265358979323846 #define M_PI_2 1.57079632679489661923 #define M_PI_4 0.785398163397448309616 #define M_1_PI 0.318309886183790671538 #define M_2_PI 0.636619772367581343076 #define M_2_SQRTPI 1.12837916709551257390 #define M_SQRT2 1.41421356237309504880 #define M_SQRT1_2 0.707106781186547524401 #endif /* _USE_MATH_DEFINES */

    但必须在使用的文件中,

    #include<math.h>之前,加入#define _USE_MATH_DEFINES,如下所示:

    1 //------------------------------------------------------------------------------
    2 //>>>
    4 //使用math.h中定义M_PI的定义
    5 #define _USE_MATH_DEFINES
    6 #include <math.h>
    7 const double Rad2Deg = (180.0/M_PI);
    8 //<<<
    9 //------------------------------------------------------------------------------

    (二)<float.h>

    由于浮点数存在的精度误差,造成浮点数与0比较的问题,一般定义其误差值来解决。float.h中已经定义了float,double两种浮点数的误差值,用户可以直接使用。

    //float.h
    
    .....................
    
    #define DBL_DIG         15                      /* # of decimal digits of precision */
    #define DBL_EPSILON     2.2204460492503131e-016 /* smallest such that 1.0+DBL_EPSILON != 1.0 */
    #define DBL_MANT_DIG    53                      /* # of bits in mantissa */
    #define DBL_MAX         1.7976931348623158e+308 /* max value */
    #define DBL_MAX_10_EXP  308                     /* max decimal exponent */
    #define DBL_MAX_EXP     1024                    /* max binary exponent */
    #define DBL_MIN         2.2250738585072014e-308 /* min positive value */
    #define DBL_MIN_10_EXP  (-307)                  /* min decimal exponent */
    #define DBL_MIN_EXP     (-1021)                 /* min binary exponent */
    #define _DBL_RADIX      2                       /* exponent radix */
    #define _DBL_ROUNDS     1                       /* addition rounding: near */
    
    #define FLT_DIG         6                       /* # of decimal digits of precision */
    #define FLT_EPSILON     1.192092896e-07F        /* smallest such that 1.0+FLT_EPSILON != 1.0 */
    #define FLT_GUARD       0
    #define FLT_MANT_DIG    24                      /* # of bits in mantissa */
    #define FLT_MAX         3.402823466e+38F        /* max value */
    #define FLT_MAX_10_EXP  38                      /* max decimal exponent */
    #define FLT_MAX_EXP     128                     /* max binary exponent */
    #define FLT_MIN         1.175494351e-38F        /* min positive value */
    #define FLT_MIN_10_EXP  (-37)                   /* min decimal exponent */
    #define FLT_MIN_EXP     (-125)                  /* min binary exponent */
    #define FLT_NORMALIZE   0
    #define FLT_RADIX       2                       /* exponent radix */
    #define FLT_ROUNDS      1                       /* addition rounding: near */

     应用举例:

    //------------------------------------------------------------------------------
    //>>>
    #include <float.h>
    #define  FLOAT_EQ(a,b)  (fabs(a-b)<=FLT_EPSILON)
    #define  DOUBLE_EQ(a,b)  (fabs(a-b)<=DBL_EPSILON)
    //<<<
    //------------------------------------------------------------------------------
    
    float x,y;
    
    x=0.0;
    
    y=0.0000001;
    
    if(fabs(a)<FLT_EPSILON)  //判断单精度类型变量x是否为零
    ......
    
    if(fabls(a-b)<FLT_EPSILON) //判断单精度变量x,y是否相等
    ......

     注意:对以上数学计算的宏定义,不要重复定义。

  • 相关阅读:
    地图的可视化--Folium
    GIS性能策略
    计算多边形中心线
    生成凹壳
    路径分析之NetworkX实例
    网络分析之networkx(转载)
    网络分析之Pgrouting(转载)
    颜色空间变换(RGB-HSV)
    计算坡度与坡向
    计算山体阴影
  • 原文地址:https://www.cnblogs.com/vranger/p/3395604.html
Copyright © 2011-2022 走看看