zoukankan      html  css  js  c++  java
  • BZOJ3129: [Sdoi2013]方程

    拓展Lucas+容斥原理

      1 #include<cstdio>
      2 #include<cstdlib>
      3 #include<algorithm>
      4 #include<cstring>
      5 #include<vector>
      6 #include<cmath>
      7 #include<queue>
      8 #define MAXN 10000+10
      9 #define INF 0x7f7f7f7f
     10 #define LINF 0x7f7f7f7f7f7f7f7f
     11 #define ll long long
     12 #define pb push_back
     13 #define ft first
     14 #define sc second
     15 #define mp make_pair
     16 #define pil pair<int,ll>
     17 #define pll pair<ll,ll>
     18 using namespace std;
     19 struct Lucas{
     20     void extgcd(ll a,ll b,ll &x,ll &y){
     21         if(!b){x=1,y=0;}
     22         else{
     23             ll xx,yy;
     24             extgcd(b,a%b,xx,yy);
     25             x=yy;
     26             y=xx-a/b*yy;
     27         }
     28     }
     29     ll Inv(ll a,ll b){
     30         ll x,y;
     31         extgcd(a,b,x,y);
     32         x=(x%b+b)%b;
     33         if(!x)x+=b;
     34         return x;
     35     }
     36     ll Pow(ll a,ll b,ll p){
     37         ll ret=1LL;
     38         while(b){    
     39             if(b&1){(ret*=a)%=p;}
     40             (a*=a)%=p;
     41             b>>=1;
     42         }
     43         return ret;
     44     }
     45     ll fac(ll n,ll pi,ll pk){
     46         if(!n)return 1LL;
     47         ll ret=1LL;
     48         for(ll i=2;i<pk;i++){
     49             if(i%pi)(ret*=i)%=pk;    
     50         }
     51         ret=Pow(ret,n/pk,pk);
     52         for(ll i=2;i<=(n%pk);i++){
     53             if(i%pi)(ret*=i)%=pk;    
     54         }
     55         return ret*fac(n/pi,pi,pk)%pk;
     56     }
     57     ll C(ll n,ll m,ll pi,ll pk){
     58         ll a=fac(n,pi,pk),b=fac(m,pi,pk),c=fac(n-m,pi,pk);
     59         ll t=0LL;
     60         for(ll i=n/pi;i;i/=pi)t+=i;
     61         for(ll i=m/pi;i;i/=pi)t-=i;
     62         for(ll i=(n-m)/pi;i;i/=pi)t-=i;
     63         ll ret=a*Inv(b,pk)*Inv(c,pk)%pk;
     64         (ret*=Pow(pi,t,pk))%=pk;
     65         return ret;
     66     }
     67     ll n,m,p;
     68     vector<pll> pn;
     69     ll init(ll pp){
     70         p=pp;
     71         ll x=sqrt(pp*1.0);
     72         for(ll i=2;i<=x;i++){
     73             if(pp%i==0){
     74                 ll pk=1LL;
     75                 while(pp%i==0){
     76                     pp/=i;
     77                     pk*=i;
     78                 }
     79                 pn.pb(mp(i,pk));
     80             }
     81         }
     82         if(pp^1){
     83             pn.pb(mp(pp,pp));
     84         }
     85     }
     86     ll solve(ll n,ll m){
     87         ll ans=0LL,pi,pk;
     88         for(int i=0;i<pn.size();i++){
     89             pi=pn[i].ft,pk=pn[i].sc;
     90             ll t=C(n,m,pi,pk);
     91             (t*=(p/pk))%=p;
     92             (t*=Inv(p/pk,pk))%=p;
     93             (ans+=t)%=p;
     94         }
     95         return ans;
     96     }
     97 }L;
     98 int T,n,n1,n2,m;
     99 int a[10];
    100 ll ans,p;
    101 ll calc(ll n,ll m){
    102     return L.solve(m+n-1,min(m,n-1));
    103 }
    104 void rc(int k,int m,int f){
    105     if(m<0)return;
    106     ans+=f*calc(n,m);
    107     ans=(ans%p+p)%p;
    108     for(int i=k+1;i<=n1;i++){
    109         rc(i,m-a[i],-f);
    110     }
    111 }
    112 void solve(){
    113     scanf("%d%d%d%d",&n,&n1,&n2,&m);
    114     m-=n;
    115     for(int i=1;i<=n1;i++){
    116         scanf("%d",&a[i]);
    117     }
    118     int t;
    119     for(int i=1;i<=n2;i++){
    120         scanf("%d",&t);
    121         m-=(t-1);
    122     }
    123     if(m<0){
    124         printf("0
    ");
    125         return;
    126     }
    127     ans=0LL;
    128     rc(0,m,1);
    129     printf("%lld
    ",ans);
    130 }
    131 int main()
    132 {
    133     //freopen("data.in","r",stdin);
    134     scanf("%d%lld",&T,&p);
    135     L.init(p);
    136     while(T--){
    137         solve();
    138     }
    139     return 0;
    140 }
  • 相关阅读:
    【华为云技术分享】区块链与数据库如何结合?
    【华为云技术分享】跟繁琐的命令行说拜拜!Gerapy分布式爬虫管理框架来袭!
    gin casbin xorm vue-admin权限认证。
    golang优秀库及介绍
    网上的element-ui-admin运行
    golang时区处理
    Let's Encrypt apache的配置
    wireshark分析自己向自己请求服务
    XORM的几个常用数据处理
    golang处理json
  • 原文地址:https://www.cnblogs.com/w-h-h/p/8359051.html
Copyright © 2011-2022 走看看