zoukankan      html  css  js  c++  java
  • hive高阶1--sql和hive语句执行顺序、explain查看执行计划、group by生成MR

    hive语句执行顺序

    msyql语句执行顺序

    代码写的顺序:

    select ... from... where.... group by... having... order by.. 
        或者
    from ... select ...

    代码的执行顺序:

    from... where...group by... having.... select ... order by...

    hive 语句执行顺序

    大致顺序
    from... where.... select...group by... having ... order by...

    explain查看执行计划

    hive语句和mysql都可以通过explain查看执行计划,这样就可以查看执行顺序,比如代码
    explain
        select city,ad_type,device,sum(cnt) as cnt
        from tb_pmp_raw_log_basic_analysis
        where day = '2016-05-28' and type = 0 and media = 'sohu' and (deal_id = '' or deal_id = '-' or deal_id is NULL)    
        group by city,ad_type,device
    显示执行计划如下
    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
    
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Map Operator Tree:
              TableScan
                alias: tb_pmp_raw_log_basic_analysis
                Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                Filter Operator
                  predicate: (((deal_id = '') or (deal_id = '-')) or deal_id is null) (type: boolean)
                  Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                  Select Operator
                    expressions: city (type: string), ad_type (type: string), device (type: string), cnt (type: bigint)
                    outputColumnNames: city, ad_type, device, cnt
                    Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                    Group By Operator
                      aggregations: sum(cnt)
                      keys: city (type: string), ad_type (type: string), device (type: string)
                      mode: hash
                      outputColumnNames: _col0, _col1, _col2, _col3
                      Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                      Reduce Output Operator
                        key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                        sort order: +++
                        Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                        Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                        value expressions: _col3 (type: bigint)
          Reduce Operator Tree:
            Group By Operator
              aggregations: sum(VALUE._col0)
              keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
              mode: mergepartial
              outputColumnNames: _col0, _col1, _col2, _col3
              Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: bigint)
                outputColumnNames: _col0, _col1, _col2, _col3
                Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
                File Output Operator
                  compressed: false
                  Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                      serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
    
      Stage: Stage-0
        Fetch Operator
          limit: -1
    具体介绍如下
    **stage1的map阶段**
            TableScan:from加载表,描述中有行数和大小等
            Filter Operator:where过滤条件筛选数据,描述有具体筛选条件和行数、大小等
            Select Operator:筛选列,描述中有列名、类型,输出类型、大小等。
            Group By Operator:分组,描述了分组后需要计算的函数,keys描述用于分组的列,outputColumnNames为输出的列名,可以看出列默认使用固定的别名_col0,以及其他信息
            Reduce Output Operator:map端本地的reduce,进行本地的计算,然后按列映射到对应的reduce
    **stage1的reduce阶段Reduce Operator Tree**
            Group By Operator:总体分组,并按函数计算。map计算后的结果在reduce端的合并。描述类似。mode: mergepartial是说合并map的计算结果。map端是hash映射分组
            Select Operator:最后过滤列用于输出结果
            File Output Operator:输出结果到临时文件中,描述介绍了压缩格式、输出文件格式。
            stage0第二阶段没有,这里可以实现limit 100的操作。

    总结

    1,每个stage都是一个独立的MR,复杂的hql语句可以产生多个stage,可以通过执行计划的描述,看看具体步骤是什么。
    2,执行计划有时预测数据量,不是真实运行,可能不准确
    

    group by的MR

    hive语句最好写子查询嵌套,这样分阶段的导入数据,可以逐步减少数据量。但可能会浪费时间。所以需要设计好。
    group by本身也是一种数据筛选,可以大量减少数据,尤其用于去重等方面,功效显著。但group by产生MR有时不可控,不知道在哪个阶段更好。尤其,map端本地的reduce减少数据有很大作用。
    
    尤其,hadoop的MR不患寡而患不均。数据倾斜将是MR计算的最大瓶颈。hive中可以设置分区、桶、distribute by等来控制分配数据给Reduce。
    那么,group by生成MR是否可以优化呢?
    下面两端代码,可以对比一下,

    代码1:

    explain
    select advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media,count(1) as cnt
    from (
      select 
        split(all,'\\|~\\|')[41] as advertiser_id,
        split(all,'\\|~\\|')[11] as crt_id,
        split(all,'\\|~\\|')[8] as ad_place_id,
        split(all,'\\|~\\|')[34] as channel,
        split(all,'\\|~\\|')[42] as ad_type,
        split(all,'\\|~\\|')[43] as rtb_type,
        split(split(all,'\\|~\\|')[5],'/')[1] as media
      from tb_pmp_raw_log_bid_tmp tb
    ) a 
    group by advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media;

    代码2:

    explain
      select 
        split(all,'\\|~\\|')[41] as advertiser_id,
        split(all,'\\|~\\|')[11] as crt_id,
        split(all,'\\|~\\|')[8] as ad_place_id,
        split(all,'\\|~\\|')[34] as channel,
        split(all,'\\|~\\|')[42] as ad_type,
        split(all,'\\|~\\|')[43] as rtb_type,
        split(split(all,'\\|~\\|')[5],'/')[1] as media
      from tb_pmp_raw_log_bid_tmp tb
      group by split(all,'\\|~\\|')[41],split(all,'\\|~\\|')[11],split(all,'\\|~\\|')[8],split(all,'\\|~\\|')[34],split(all,'\\|~\\|')[42],split(all,'\\|~\\|')[43],split(split(all,'\\|~\\|')[5],'/')[1]
    先进行子查询,然后group by,还是直接group by,两种那个好一点,
    我个人测试后认为,数据量小,第一种会好一点,如果数据量大,可能第二种会好。至于数据量多大。TB级以下的都是小数据。
    
    两个执行计划对比如下,可以看出基本执行的步骤的数据分析量差不多。
    group by一定要用,但内外,先后执行顺序效果差不多。
    

      代码1:

    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
    
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Map Operator Tree:
              TableScan
                alias: tb
                Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                Select Operator
                  expressions: split(all, '\|~\|')[41] (type: string), split(all, '\|~\|')[11] (type: string), split(all, '\|~\|')[8] (type: string), split(all, '\|~\|')[34] (type: string), split(all, '\|~\|')[42] (type: string), split(all, '\|~\|')[43] (type: string), split(split(all, '\|~\|')[5], '/')[1] (type: string)
                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
                  Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                  Group By Operator
                    aggregations: count(1)
                    keys: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                    mode: hash
                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
                    Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                    Reduce Output Operator
                      key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                      sort order: +++++++
                      Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                      Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                      value expressions: _col7 (type: bigint)
          Reduce Operator Tree:
            Group By Operator
              aggregations: count(VALUE._col0)
              keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
              mode: mergepartial
              outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
              Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string), _col7 (type: bigint)
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
                Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
                File Output Operator
                  compressed: false
                  Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                      serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
    
      Stage: Stage-0
        Fetch Operator
          limit: -1

    代码2:

    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
    
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Map Operator Tree:
              TableScan
                alias: tb
                Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                Select Operator
    
    
                  expressions: all (type: string)
                  outputColumnNames: all
                  Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                  Group By Operator
    
                    keys: split(all, '\|~\|')[41] (type: string), split(all, '\|~\|')[11] (type: string), split(all, '\|~\|')[8] (type: string), split(all, '\|~\|')[34] (type: string), split(all, '\|~\|')[42] (type: string), split(all, '\|~\|')[43] (type: string), split(split(all, '\|~\|')[5], '/')[1] (type: string)
                    mode: hash
                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
                    Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                    Reduce Output Operator
                      key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                      sort order: +++++++
                      Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                      Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
    
          Reduce Operator Tree:
            Group By Operator
    
              keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
              mode: mergepartial
              outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
              Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
                Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
                File Output Operator
                  compressed: false
                  Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                      serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
    
      Stage: Stage-0
        Fetch Operator
          limit: -1

      


     
  • 相关阅读:
    ThinkPHP框架被爆任意代码执行漏洞
    thinkphp session 跨域问题解决方案
    网摘地址
    thinkphp的各种内部函数 D()、F()、S()、C()、L()、A()、I()详解
    IP相关(近两天的学习总结)
    ThinkPHP 手册摘录之(跨模块)调用
    c#让程序在WIN7下兼容模式运行
    QT学习之经典控件源码(如此强大)
    C#自定义控件七水波纹
    C#自定义控件五报警按钮
  • 原文地址:https://www.cnblogs.com/w-j-q/p/14822394.html
Copyright © 2011-2022 走看看