zoukankan      html  css  js  c++  java
  • 数据结构 二叉树

    二叉树性质

    性质1: 在二叉树的第i层上至多有2i-1个结点(i>0)

    性质2: 深度为k的二叉树至多有2k-1个结点(k>0)

    性质3: 对于任何一棵二叉树,若度为2的结点数有n2个,则叶子数(n0)必定为n2+1 (即n0=n2+1)

     

    二叉树的递归遍历源码:分为先序遍历:根 左 右 ;中序遍历:左 根 右;后续遍历:左 右 根

    #define _CRT_SECURE_NO_WARNINGS
    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    
    //二叉树节点
    struct BiNode{
        char ch;
        struct BiNode *lchild;
        struct BiNode *rchild;
    };
    
    //二叉树的递归遍历先序
    void recursion(struct BiNode *root){
    
        if (NULL == root){
            return;
        }
    
        //再访问左子树
        recursion(root->lchild);//printf 先序遍历
        //再访问右子树
        recursion(root->rchild);// printf 中顺序遍历
        //先访问根节点
        printf("%c ", root->ch);// printf  后续遍历
    }
    
    void test(){
    
        //二叉树节点
        struct BiNode node1 = { 'A', NULL, NULL };
        struct BiNode node2 = { 'B', NULL, NULL };
        struct BiNode node3 = { 'C', NULL, NULL };
        struct BiNode node4 = { 'D', NULL, NULL };
        struct BiNode node5 = { 'E', NULL, NULL };
        struct BiNode node6 = { 'F', NULL, NULL };
        struct BiNode node7 = { 'G', NULL, NULL };
        struct BiNode node8 = { 'H', NULL, NULL };
    
        node1.lchild = &node2;
        node1.rchild = &node6;
        node2.rchild = &node3;
        node3.lchild = &node4;
        node3.rchild = &node5;
        node6.rchild = &node7;
        node7.lchild = &node8;
    
        //遍历二叉树
        recursion(&node1);
    }
    
    int main(){
    
        test();
    
        system("pause");
        return EXIT_SUCCESS;
    }

    通过栈实现二叉树的非递归遍历:

    见数据结构 栈的实现

    #define _CRT_SECURE_NO_WARNINGS
    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #include"SeqStack.h"
    #include<stdbool.h>
    
    //二叉树节点
    struct BiNode{
        char ch;
        struct BiNode *lchild;
        struct BiNode *rchild;
    };
    
    struct Info{
        struct BiNode *node;
        bool flag;
    };
    
    struct Info *CreateInfo(struct BiNode *node,bool flag){
        struct Info *info = malloc(sizeof(struct Info));
        info->node = node;
        info->flag = flag;
    
        return info;
    }
    
    
    void nonrecursion(struct BiNode *root){
        
        //初始化stack
        void *stack = Init_SeqStack();
        //1. 先把根节点入stack
        Push_SeqStack(stack, CreateInfo(root, false));
    
        while (Size_SeqStack(stack) > 0){
            
            //2. 获得stack顶元素
            struct Info *info = (struct Info *)Top_SeqStack(stack);
            Pop_SeqStack(stack);
    
            //3. 判断当前节点的flag是否为true,true:直接输出。false:左子树和右子树分别压stack,当前节点二次入stack
            if(info->flag){
                printf("%c ",info->node->ch);
                free(info);
                continue;
            }
    
    
            
            //右子树入stack
            if (info->node->rchild != NULL){
                Push_SeqStack(stack, CreateInfo(info->node->rchild, false));
            }
    
            //根节点入stack
            info->flag = true;
            Push_SeqStack(stack, info);
    
    
            //左子树入stack
            if (info->node->lchild != NULL){
                Push_SeqStack(stack, CreateInfo(info->node->lchild, false));
            }
    
    
        }
    
    }
    
    void test(){
    
        //二叉树节点
        struct BiNode node1 = { 'A', NULL, NULL };
        struct BiNode node2 = { 'B', NULL, NULL };
        struct BiNode node3 = { 'C', NULL, NULL };
        struct BiNode node4 = { 'D', NULL, NULL };
        struct BiNode node5 = { 'E', NULL, NULL };
        struct BiNode node6 = { 'F', NULL, NULL };
        struct BiNode node7 = { 'G', NULL, NULL };
        struct BiNode node8 = { 'H', NULL, NULL };
    
        node1.lchild = &node2;
        node1.rchild = &node6;
        node2.rchild = &node3;
        node3.lchild = &node4;
        node3.rchild = &node5;
        node6.rchild = &node7;
        node7.lchild = &node8;
    
        nonrecursion(&node1);
    
    }
    
    
    
    int main(){
    
        test();
    
    
        
    
        system("pause");
        return EXIT_SUCCESS;
    }

    求二叉数的叶子节点函数:

    void caculateLeafNums(struct BiNode *root,int *num){
    
        if (NULL == root){
            return;
        }
    
        if (root->lchild == NULL && root->rchild == NULL){
            (*num)++;
        }
        
        //遍历左子树
        caculateLeafNums(root->lchild, num);
        //遍历右子树
        caculateLeafNums(root->rchild, num);
    
    }

    二叉树的拷贝、释放、二叉树高度函数:

    //拷贝二叉树
    struct BiNode *copyTree(struct BiNode *root){
    
        if (NULL == root){
            return NULL;
        }
    
        //递归拷贝左子树
        struct BiNode *lchild = copyTree(root->lchild);
        //递归拷贝右子树
        struct BiNode *rchild = copyTree(root->rchild);
    
        //拷贝当前节点
        struct BiNode *newnode = malloc(sizeof(struct BiNode));
        printf("%c ",root->ch);
        newnode->ch = root->ch;
        newnode->lchild = lchild;
        newnode->rchild = rchild;
    
        return newnode;
    }
    
    //释放二叉树内存
    void freeSpace(struct BiNode *root){
        if (NULL == root){
            return;
        }
    
        //释放左子树
        freeSpace(root->lchild);
        //释放右子树
        freeSpace(root->rchild);
        //释放根节点
        free(root);
    
    }
    
    //递归遍历
    void foreach(struct BiNode *root){
        if (NULL == root){
            return;
        }
    
        printf("%c ",root->ch);
        foreach(root->lchild);
        foreach(root->rchild);
    }
    
    //求树的高度
    int caculateTreeHeight(struct BiNode *root){
    
        if (NULL == root){
            return 0;
        }
    
    
        //求左子树的高度
        int lheight = caculateTreeHeight(root->lchild);
        //求右子树的高度
        int rheight = caculateTreeHeight(root->rchild);
    
        int height = lheight > rheight ? lheight + 1 : rheight + 1;
    
        return height;
    }
  • 相关阅读:
    runtime关联属性示例
    Loader之二:CursorLoader基本实例
    Loader之一:基本原理
    Fragment之三:根据屏幕尺寸加载不同的Fragment
    Fragment之一:Fragment入门
    Github android客户端源代码分析之一:环境搭建
    如何在Eclipse中查看Android API源码以及support包源码
    Intent七在属性之一:ComponentName
    Intent七大属性之总结
    使用SQLiteHelper创建数据库并插入数据
  • 原文地址:https://www.cnblogs.com/w-x-me/p/6783132.html
Copyright © 2011-2022 走看看