zoukankan      html  css  js  c++  java
  • POJ 2112

    原题地址:http://poj.org/problem?id=2112

    题目大意:有K个挤奶机(标号为1 ~ K)和C头奶牛(编号为K + 1 ~ K + C),以邻接矩阵的方式给出它们两两之间的距离,每个挤奶机最多能挤M头奶牛的奶,求一种紧挨方案使得所有挤奶机到奶牛的距离的最大值最小

    数据范围和一些细节:1 <= K <= 30, 1 <= C <= 200, 1 <= M <= 15, 每条边的长度L 满足 1 <= L <= 200。两点之间如果没有直接连接的边,则在邻接矩阵中给出"0"。邻接矩阵的一行可能会断成多行

    题目分析:

    这道题和昨天那道2455大同小异,都是使路径长最大值最小。不同的是,2455那道题要求的是路径上的某一条最长边的长度最小,而这道题是满足两点之间的路径长的最大值最小。所以这道题先用Floyd算法预处理出每对顶点之间的最短路,然后二分答案k,将距离小于k的两点之间连容量为1的边,反向边容量为0(注意,在这里连边的时候只能连接挤奶机和奶牛,不能连其它边,我在这里WA了几次)。最后新建源点和汇点,从源点向每台挤奶机连接容量为M的边,从每头奶牛向汇点连接容量为1的边,判断最大流是否等于C。

      1 //date 20140119
      2 #include <cstdio>
      3 #include <cstring>
      4 
      5 const int maxn = 250;
      6 const int maxm = 110000;
      7 const int INF = 99999999;
      8 
      9 inline int getint()
     10 {
     11     int ans(0); char w = getchar();
     12     while('0' > w || w > '9')w = getchar();
     13     while('0' <= w && w <= '9')
     14     {
     15         ans = ans * 10 + w - '0';
     16         w = getchar();
     17     }
     18     return ans;
     19 }
     20 
     21 inline int min(int a, int b){return a < b ? a : b;}
     22 inline int max(int a, int b){return a > b ? a : b;}
     23 
     24 int K, C, M;
     25 int n;
     26 int map[maxn][maxn];
     27 
     28 struct edge
     29 {
     30     int v, c, next;
     31 }E[maxm];
     32 int s, t;
     33 int a[maxn], now[maxn];
     34 int lab[maxn];
     35 int nedge;
     36 
     37 inline void add(int u, int v, int c)
     38 {
     39     E[++nedge].v = v;
     40     E[nedge].c = c;
     41     E[nedge].next = a[u];
     42     a[u] = nedge;
     43 }
     44 
     45 inline void floyd()
     46 {
     47     for(int k = 1; k <= n; ++k)
     48         for(int i = 1; i <= n; ++i)
     49             for(int j = 1; j <= n; ++j)
     50             {
     51                 if(i == k || j == k || i == j)continue;
     52                 map[i][j] = min(map[i][j], map[i][k] + map[j][k]);
     53             }
     54 }
     55 
     56 inline int label()
     57 {
     58     static int q[maxn];
     59     int l = 0, r = 1;
     60     memset(lab, 0xFF, sizeof lab);
     61     q[1] = s; lab[s] = 0;
     62     while(l < r)
     63     {
     64         int x = q[++l];
     65         for(int i = a[x]; i; i = E[i].next)
     66             if(E[i].c > 0 && lab[E[i].v] == -1)
     67             {
     68                 lab[E[i].v] = lab[x] + 1;
     69                 q[++r] = E[i].v;
     70             }
     71     }
     72     return lab[t] != -1;
     73 }
     74 
     75 int Dinic(int v, int f)
     76 {
     77     if(v == t)return f;
     78     int res = 0, w;
     79     for(int i = now[v]; i; now[v] = i = E[i].next)
     80         if((f > 0) && (E[i].c > 0) && (lab[E[i].v] == lab[v] + 1) && (w = Dinic(E[i].v, min(E[i].c, f))))
     81         {
     82             E[i].c -= w;
     83             E[i ^ 1].c += w;
     84             res += w;
     85             f -= w;
     86             if(f == 0)break;
     87         }
     88     return res;
     89 }
     90 
     91 inline int max_flow()
     92 {
     93     int ans = 0;
     94     while(label())
     95     {
     96         for(int i = 1; i <= t; ++i)now[i] = a[i];
     97         ans += Dinic(s, INF);
     98     }
     99     return ans;
    100 }
    101 
    102 inline bool check(int mid)
    103 {
    104     memset(a, 0, sizeof a);
    105     nedge = 1;
    106     for(int i = 1; i <= K; ++i)
    107         for(int j = K + 1; j <= n; ++j)
    108             if(map[i][j] <= mid){add(i, j, 1); add(j, i, 0);}
    109     
    110     for(int i = 1; i <= K; ++i){add(s, i, M); add(i, s, 0);}
    111     for(int i = 1; i <= C; ++i){add(i + K, t, 1); add(t, i + K, 0);}
    112     return (max_flow() == C) ;
    113 }
    114 
    115 inline int solve(int l, int r)
    116 {
    117     int mid;
    118     while(l < r)
    119     {
    120         mid = (l + r) >> 1;
    121         if(check(mid))r = mid;
    122         else l = mid + 1;
    123     }
    124     return l;
    125 }
    126 
    127 int main()
    128 {
    129     K = getint(); C = getint(); M = getint();
    130     n = K + C; s = n + 1; t = n + 2;
    131     int minl = INF, maxl = 0;
    132     for(int i = 1; i <= n; ++i)
    133         for(int j = 1; j <= n; ++j)
    134         {
    135             map[i][j] = getint();
    136             if(map[i][j] == 0)map[i][j] = INF;
    137         }
    138     floyd();
    139     for(int i = 1; i <= K; ++i)
    140         for(int j = K + 1; j <= n; ++j)
    141         {
    142             if(map[i][j] == INF)continue;
    143             minl = min(minl, map[i][j]);
    144             maxl = max(maxl, map[i][j]);
    145         }
    146     int ans = solve(minl, maxl);
    147     printf("%d
    ", ans);
    148     return 0;
    149 }

    一直想写SGU187一直也没写过……求各位指点

  • 相关阅读:
    C语言博客I作业04
    C语言I博客作业03
    C语言I博客作业02
    C语言ll作业01
    C语言寒假大作战04
    C语言寒假大作战03
    C语言寒假大作战02
    C语言寒假大作战01
    C语言I作业12—学期总结
    C语言I博客作业11
  • 原文地址:https://www.cnblogs.com/w007878/p/3525859.html
Copyright © 2011-2022 走看看