zoukankan      html  css  js  c++  java
  • 用keras的cnn做人脸分类

    keras介绍

    Keras是一个简约,高度模块化的神经网络库。采用Python / Theano开发。
    使用Keras如果你需要一个深度学习库:

    可以很容易和快速实现原型(通过总模块化,极简主义,和可扩展性)
    同时支持卷积网络(vision)和复发性的网络(序列数据)。以及两者的组合。
    无缝地运行在CPU和GPU上。
    keras的资源库网址为https://github.com/fchollet/keras

    olivettifaces人脸数据库介绍

    Olivetti Faces是纽约大学的一个比较小的人脸库,由 40个人的400张图片构成,即每个人的人脸图片为10张。每张图片的灰度级为8位,每个像素的灰度大小位于0-255之间,每张图片大小为64×64。 如下图,这个图片大小是1140942,一共有2020张人脸,故每张人脸大小是(1140/20)(942/20)即5747=2679:

    预处理模块

    使用了PIL(Python Imaging Library)模块,是Python平台事实上的图像处理标准库。
    预处理流程是:打开文件-》归一化-》将图片转为数据集-》生成label-》使用pickle序列化数据集

    numpy.ndarray.flatten函数的功能是将一个矩阵平铺为向量

    from PIL import Image
    import numpy
    import cPickle
    
    img = Image.open('G:dataolivettifaces.gif')
    # numpy supports conversion from image to ndarray and normalization by dividing 255
    # 1140 * 942 ndarray
    img_ndarray = numpy.asarray(img, dtype='float64') / 255
    # create numpy array of 400*2679
    img_rows, img_cols = 57, 47
    face_data = numpy.empty((400, img_rows*img_cols))
    # convert 1140*942 ndarray to 400*2679 matrix
    
    for row in range(20):
        for col in range(20):
            face_data[row*20+col] = numpy.ndarray.flatten(img_ndarray[row*img_rows:(row+1)*img_rows, col*img_cols:(col+1)*img_cols])
    
    # create label
    face_label = numpy.empty(400, dtype=int)
    for i in range(400):
        face_label[i] = i / 10
    
    # pickling file
    f = open('G:dataolivettifaces.pkl','wb')
    # store data and label as a tuple
    cPickle.dump((face_data,face_label), f)
    f.close()
    

    分类模型

    程序参考了官方示例:https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
    一共有40个类,每个类10个样本,共400个样本。其中320个样本用于训练,40个用于验证,剩下40个测试
    注意给第一层指定input_shape,如果是MLP,代码为:

    
    model = Sequential()
    # Dense(64) is a fully-connected layer with 64 hidden units.# in the first layer, you must specify the expected input data shape:# here, 20-dimensional vectors.
    model.add(Dense(64, input_dim=20, init='uniform'))
    

    后面可以不指定Dense的input shape

    from __future__ import print_function
    import numpy as np
    import cPickle
    
    np.random.seed(1337) # for reproducibililty
    
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation, Flatten
    from keras.layers.convolutional import Convolution2D, MaxPooling2D
    from keras.utils import np_utils
    
    # split data into train,vavlid and test
    # train:320
    # valid:40
    # test:40
    def split_data(fname):
        f = open(fname, 'rb')
        face_data,face_label = cPickle.load(f)
    
        X_train = np.empty((320, img_rows * img_cols))
        Y_train = np.empty(320, dtype=int)
    
        X_valid = np.empty((40, img_rows* img_cols))
        Y_valid = np.empty(40, dtype=int)
    
        X_test = np.empty((40, img_rows* img_cols))
        Y_test = np.empty(40, dtype=int)
    
        for i in range(40):
            X_train[i*8:(i+1)*8,:] = face_data[i*10:i*10+8,:]
            Y_train[i*8:(i+1)*8] = face_label[i*10:i*10+8]
    
            X_valid[i] = face_data[i*10+8,:]
            Y_valid[i] = face_label[i*10+8]
    
            X_test[i] = face_data[i*10+9,:]
            Y_test[i] = face_label[i*10+9]
        
        return (X_train, Y_train, X_valid, Y_valid, X_test, Y_test)
    
    if __name__=='__main__':
        batch_size = 10
        nb_classes = 40
        nb_epoch = 12
    
        # input image dimensions
        img_rows, img_cols = 57, 47
        # number of convolutional filters to use
        nb_filters = 32
        # size of pooling area for max pooling
        nb_pool = 2
        # convolution kernel size
        nb_conv = 3
    
        (X_train, Y_train, X_valid, Y_valid, X_test, Y_test) = split_data('G:dataolivettifaces.pkl')
        X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
        X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
        
        print('X_train shape:', X_train.shape)
        print(X_train.shape[0], 'train samples')
        print(X_test.shape[0], 'test samples')
        # convert label to binary class matrix
        Y_train = np_utils.to_categorical(Y_train, nb_classes)
        Y_test = np_utils.to_categorical(Y_test, nb_classes)
    
        model = Sequential()
        # 32 convolution filters , the size of convolution kernel is 3 * 3
        # border_mode can be 'valid' or 'full'
        #‘valid’only apply filter to complete patches of the image. 
        # 'full'  zero-pads image to multiple of filter shape to generate output of shape: image_shape + filter_shape - 1
        # when used as the first layer, you should specify the shape of inputs 
        # the first number means the channel of an input image, 1 stands for grayscale imgs, 3 for RGB imgs
        model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
                                border_mode='valid',
                                input_shape=(1, img_rows, img_cols)))
        # use rectifier linear units : max(0.0, x)
        model.add(Activation('relu'))
        # second convolution layer with 32 filters of size 3*3
        model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
        model.add(Activation('relu'))
        # max pooling layer, pool size is 2 * 2
        model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
        # drop out of max-pooling layer , drop out rate is 0.25 
        model.add(Dropout(0.25))
        # flatten inputs from 2d to 1d
        model.add(Flatten())
        # add fully connected layer with 128 hidden units
        model.add(Dense(128))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))
        # output layer with softmax 
        model.add(Dense(nb_classes))
        model.add(Activation('softmax'))
        # use cross-entropy cost and adadelta to optimize params
        model.compile(loss='categorical_crossentropy', optimizer='adadelta')
        # train model with bath_size =10, epoch=12
        # set verbose=1 to show train info
        model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              show_accuracy=True, verbose=1, validation_data=(X_test, Y_test))
        # evaluate on test set
        score = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0)
        print('Test score:', score[0])
        print('Test accuracy:', score[1])
    

    结果:
    准确率有97%

  • 相关阅读:
    coffee.js
    domOperation.js
    ImmediateFunc.js
    callback.js
    array.js
    asynchronous.js
    addEventListener.js
    meta的日常设置
    11.11 双十一 前端教你一键领取天猫千张优惠券 (领前先想想有没有钱花这些优惠券)
    前端的最后是逻辑和数学
  • 原文地址:https://www.cnblogs.com/wacc/p/5341654.html
Copyright © 2011-2022 走看看