zoukankan      html  css  js  c++  java
  • LogitBoost学习


    首先列出参考文献:Additive Logistic Regression: a Statistical View of Boosting还是J. Friedman的文章。

    这里主要讲LogitBoost,discrete adaboost和real adaboost相对LogitBoost和gentle adaboost比较简单,我之前的博客也有介绍,详见AdaBoost算法学习,相信你能看懂。gentle adaboost以后再做介绍。

    LogitBoost、discrete adaboost、real adaboost、gentle adaboost大致都属于adaboost体系。上面4中boost算法,其大体结构都是比较相似的,但是还是有区别的。
    首先是关于损失函数(或代价函数),通常见到比较多的是均方误差和似然函数,而上面的算法中,Discrete AdaBoost、Real AdaBoost和Gentle AdaBoost算法都是采用对数损失函数,具体形式如下:
    J(F) = ,其直观上表达的意义就是分类错误个数越多,损失就越大。

    Friedman在文章中证明上面三个adaboost都是用加性logistic regression通过Newton-like方法去最小化损失函数

    而Logit Boost算法则采用最大化对数似然函数来推导的。


    第二点是具体优化方法,Discrete AdaBoost与Real AdaBoost主要通过Newton-like的方法来优化,而Gentle AdaBoost与Logit Boost都是采用类似牛顿迭代的方式优化的。


    首先从logistic regression分类说起


    x是向量,y是标签。我们用logistic regression来分类


    在使用logistic变换后概率pk如下表示


    所以我们要学习参数beta。

    考虑用最大化对数似然函数求解


    整理后,损失函数如下:


    要最小化损失函数,考虑两种方法。

    一种是牛顿法,它考虑了loss function的一阶和二阶导数。

    另一种是梯度下降法,它只考虑了loss function的一阶导数。



    下面是原始LogitBoost算法



    其中:

    ,F即我们要学习的函数。

    约束条件是:

    之所以要有约束是限制自由度为K-1,以得到唯一的解。

    损失函数如下:




    K是类别数,N是样本数,v是shrinkage,即学习率,可设为1.

    注意到Zi,k在pi,k接近0或1时,Zi,k会趋向无穷,所以Friedman在论文里做了限制,Zmax的取值范围是[2,4]。


    现在我们要用带权的Zi,k去拟合xi。我们用回归树去拟合


    化简后得到


    这就和上面的联系起来了。

    所以有



    对损失函数L在F上求偏导


    你会发现LogitBoost就是利用L的一阶和二阶导数进行优化。


    我们重新整理一下LogitBoost算法




    下面是weka里LogitBoost的核心函数,就是参照Friedman的论文实现的。

     /**
       * Builds the boosted classifier
       * 
       * @param data the data to train the classifier with
       * @throws Exception if building fails, e.g., can't handle data
       */
      public void buildClassifier(Instances data) throws Exception {
    
        m_RandomInstance = new Random(m_Seed);
        int classIndex = data.classIndex();
    
        if (m_Classifier == null) {
          throw new Exception("A base classifier has not been specified!");
        }
        
        if (!(m_Classifier instanceof WeightedInstancesHandler) &&
    	!m_UseResampling) {
          m_UseResampling = true;
        }
    
        // can classifier handle the data?
        getCapabilities().testWithFail(data);
    
        if (m_Debug) {
          System.err.println("Creating copy of the training data");
        }
    
        // remove instances with missing class
        data = new Instances(data);
        data.deleteWithMissingClass();
        
        // only class? -> build ZeroR model
        if (data.numAttributes() == 1) {
          System.err.println(
    	  "Cannot build model (only class attribute present in data!), "
    	  + "using ZeroR model instead!");
          m_ZeroR = new weka.classifiers.rules.ZeroR();
          m_ZeroR.buildClassifier(data);
          return;
        }
        else {
          m_ZeroR = null;
        }
        
        m_NumClasses = data.numClasses();
        m_ClassAttribute = data.classAttribute();
    
        // Create the base classifiers
        if (m_Debug) {
          System.err.println("Creating base classifiers");
        }
        m_Classifiers = new Classifier [m_NumClasses][];
        for (int j = 0; j < m_NumClasses; j++) {
          m_Classifiers[j] = AbstractClassifier.makeCopies(m_Classifier,
    					       getNumIterations());
        }
    
        // Do we want to select the appropriate number of iterations
        // using cross-validation?
        int bestNumIterations = getNumIterations();
        if (m_NumFolds > 1) {
          if (m_Debug) {
    	System.err.println("Processing first fold.");
          }
    
          // Array for storing the results
          double[] results = new double[getNumIterations()];
    
          // Iterate throught the cv-runs
          for (int r = 0; r < m_NumRuns; r++) {
    
    	// Stratify the data
    	data.randomize(m_RandomInstance);
    	data.stratify(m_NumFolds);
    	
    	// Perform the cross-validation
    	for (int i = 0; i < m_NumFolds; i++) {
    	  
    	  // Get train and test folds
    	  Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance);
    	  Instances test = data.testCV(m_NumFolds, i);
    	  
    	  // Make class numeric
    	  Instances trainN = new Instances(train);
    	  trainN.setClassIndex(-1);
    	  trainN.deleteAttributeAt(classIndex);
    	  trainN.insertAttributeAt(new Attribute("'pseudo class'"), classIndex);
    	  trainN.setClassIndex(classIndex);
    	  m_NumericClassData = new Instances(trainN, 0);
    	  
    	  // Get class values
    	  int numInstances = train.numInstances();
    	  double [][] trainFs = new double [numInstances][m_NumClasses];
    	  double [][] trainYs = new double [numInstances][m_NumClasses];
    	  for (int j = 0; j < m_NumClasses; j++) {
    	    for (int k = 0; k < numInstances; k++) {
    	      trainYs[k][j] = (train.instance(k).classValue() == j) ? 
    		1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses);
    	    }
    	  }
    	  
    	  // Perform iterations
    	  double[][] probs = initialProbs(numInstances);
    	  m_NumGenerated = 0;
    	  double sumOfWeights = train.sumOfWeights();
    	  for (int j = 0; j < getNumIterations(); j++) {
    	    performIteration(trainYs, trainFs, probs, trainN, sumOfWeights);
    	    Evaluation eval = new Evaluation(train);
    	    eval.evaluateModel(this, test);
    	    results[j] += eval.correct();
    	  }
    	}
          }
          
          // Find the number of iterations with the lowest error
          double bestResult = -Double.MAX_VALUE;
          for (int j = 0; j < getNumIterations(); j++) {
    	if (results[j] > bestResult) {
    	  bestResult = results[j];
    	  bestNumIterations = j;
    	}
          }
          if (m_Debug) {
    	System.err.println("Best result for " + 
    			   bestNumIterations + " iterations: " +
    			   bestResult);
          }
        }
    
        // Build classifier on all the data
        int numInstances = data.numInstances();
        double [][] trainFs = new double [numInstances][m_NumClasses];
        double [][] trainYs = new double [numInstances][m_NumClasses];
        for (int j = 0; j < m_NumClasses; j++) {
          for (int i = 0, k = 0; i < numInstances; i++, k++) {
    	trainYs[i][j] = (data.instance(k).classValue() == j) ? 
    	  1.0 - m_Offset: 0.0 + (m_Offset / (double)m_NumClasses);
          }
        }
        
        // Make class numeric
        data.setClassIndex(-1);
        data.deleteAttributeAt(classIndex);
        data.insertAttributeAt(new Attribute("'pseudo class'"), classIndex);
        data.setClassIndex(classIndex);
        m_NumericClassData = new Instances(data, 0);
    	
        // Perform iterations
        double[][] probs = initialProbs(numInstances);
        double logLikelihood = logLikelihood(trainYs, probs);
        m_NumGenerated = 0;
        if (m_Debug) {
          System.err.println("Avg. log-likelihood: " + logLikelihood);
        }
        double sumOfWeights = data.sumOfWeights();
        for (int j = 0; j < bestNumIterations; j++) {
          double previousLoglikelihood = logLikelihood;
          performIteration(trainYs, trainFs, probs, data, sumOfWeights);
          logLikelihood = logLikelihood(trainYs, probs);
          if (m_Debug) {
    	System.err.println("Avg. log-likelihood: " + logLikelihood);
          }
          if (Math.abs(previousLoglikelihood - logLikelihood) < m_Precision) {
    	return;
          }
        }
      }
    
      /**
       * Gets the intial class probabilities.
       * 
       * @param numInstances the number of instances
       * @return the initial class probabilities
       */
      private double[][] initialProbs(int numInstances) {
    
        double[][] probs = new double[numInstances][m_NumClasses];
        for (int i = 0; i < numInstances; i++) {
          for (int j = 0 ; j < m_NumClasses; j++) {
    	probs[i][j] = 1.0 / m_NumClasses;
          }
        }
        return probs;
      }
    
      /**
       * Computes loglikelihood given class values
       * and estimated probablities.
       * 
       * @param trainYs class values
       * @param probs estimated probabilities
       * @return the computed loglikelihood
       */
      private double logLikelihood(double[][] trainYs, double[][] probs) {
    
        double logLikelihood = 0;
        for (int i = 0; i < trainYs.length; i++) {
          for (int j = 0; j < m_NumClasses; j++) {
    	if (trainYs[i][j] == 1.0 - m_Offset) {
    	  logLikelihood -= Math.log(probs[i][j]);
    	}
          }
        }
        return logLikelihood / (double)trainYs.length;
      }
    
      /**
       * Performs one boosting iteration.
       * 
       * @param trainYs class values
       * @param trainFs F scores
       * @param probs probabilities
       * @param data the data to run the iteration on
       * @param origSumOfWeights the original sum of weights
       * @throws Exception in case base classifiers run into problems
       */
      private void performIteration(double[][] trainYs,
    				double[][] trainFs,
    				double[][] probs,
    				Instances data,
    				double origSumOfWeights) throws Exception {
    
        if (m_Debug) {
          System.err.println("Training classifier " + (m_NumGenerated + 1));
        }
    
        // Build the new models
        for (int j = 0; j < m_NumClasses; j++) {
          if (m_Debug) {
    	System.err.println("	...for class " + (j + 1)
    			   + " (" + m_ClassAttribute.name() 
    			   + "=" + m_ClassAttribute.value(j) + ")");
          }
        
          // Make copy because we want to save the weights
          Instances boostData = new Instances(data);
          
          // Set instance pseudoclass and weights
          for (int i = 0; i < probs.length; i++) {
    
    	// Compute response and weight
    	double p = probs[i][j];
    	double z, actual = trainYs[i][j];
    	if (actual == 1 - m_Offset) {
    	  z = 1.0 / p;
    	  if (z > Z_MAX) { // threshold
    	    z = Z_MAX;
    	  }
    	} else {
    	  z = -1.0 / (1.0 - p);
    	  if (z < -Z_MAX) { // threshold
    	    z = -Z_MAX;
    	  }
    	}
    	double w = (actual - p) / z;
    
    	// Set values for instance
    	Instance current = boostData.instance(i);
    	current.setValue(boostData.classIndex(), z);
    	current.setWeight(current.weight() * w);
          }
          
          // Scale the weights (helps with some base learners)
          double sumOfWeights = boostData.sumOfWeights();
          double scalingFactor = (double)origSumOfWeights / sumOfWeights;
          for (int i = 0; i < probs.length; i++) {
    	Instance current = boostData.instance(i);
    	current.setWeight(current.weight() * scalingFactor);
          }
    
          // Select instances to train the classifier on
          Instances trainData = boostData;
          if (m_WeightThreshold < 100) {
    	trainData = selectWeightQuantile(boostData, 
    					 (double)m_WeightThreshold / 100);
          } else {
    	if (m_UseResampling) {
    	  double[] weights = new double[boostData.numInstances()];
    	  for (int kk = 0; kk < weights.length; kk++) {
    	    weights[kk] = boostData.instance(kk).weight();
    	  }
    	  trainData = boostData.resampleWithWeights(m_RandomInstance, 
    						    weights);
    	}
          }
          
          // Build the classifier
          m_Classifiers[j][m_NumGenerated].buildClassifier(trainData);
        }      
        
        // Evaluate / increment trainFs from the classifier
        for (int i = 0; i < trainFs.length; i++) {
          double [] pred = new double [m_NumClasses];
          double predSum = 0;
          for (int j = 0; j < m_NumClasses; j++) {
    	pred[j] = m_Shrinkage * m_Classifiers[j][m_NumGenerated]
    	  .classifyInstance(data.instance(i));
    	predSum += pred[j];
          }
          predSum /= m_NumClasses;
          for (int j = 0; j < m_NumClasses; j++) {
    	trainFs[i][j] += (pred[j] - predSum) * (m_NumClasses - 1) 
    	  / m_NumClasses;
          }
        }
        m_NumGenerated++;
        
        // Compute the current probability estimates
        for (int i = 0; i < trainYs.length; i++) {
          probs[i] = probs(trainFs[i]);
        }
      }
    
      /**
       * Returns the array of classifiers that have been built.
       * 
       * @return the built classifiers
       */
      public Classifier[][] classifiers() {
    
        Classifier[][] classifiers = 
          new Classifier[m_NumClasses][m_NumGenerated];
        for (int j = 0; j < m_NumClasses; j++) {
          for (int i = 0; i < m_NumGenerated; i++) {
    	classifiers[j][i] = m_Classifiers[j][i];
          }
        }
        return classifiers;
      }
    
      /**
       * Computes probabilities from F scores
       * 
       * @param Fs the F scores
       * @return the computed probabilities
       */
      private double[] probs(double[] Fs) {
    
        double maxF = -Double.MAX_VALUE;
        for (int i = 0; i < Fs.length; i++) {
          if (Fs[i] > maxF) {
    	maxF = Fs[i];
          }
        }
        double sum = 0;
        double[] probs = new double[Fs.length];
        for (int i = 0; i < Fs.length; i++) {
          probs[i] = Math.exp(Fs[i] - maxF);
          sum += probs[i];
        }
        Utils.normalize(probs, sum);
        return probs;
      }
        
      /**
       * Calculates the class membership probabilities for the given test instance.
       *
       * @param instance the instance to be classified
       * @return predicted class probability distribution
       * @throws Exception if instance could not be classified
       * successfully
       */
      public double [] distributionForInstance(Instance instance) 
        throws Exception {
    
        // default model?
        if (m_ZeroR != null) {
          return m_ZeroR.distributionForInstance(instance);
        }
        
        instance = (Instance)instance.copy();
        instance.setDataset(m_NumericClassData);
        double [] pred = new double [m_NumClasses];
        double [] Fs = new double [m_NumClasses]; 
        for (int i = 0; i < m_NumGenerated; i++) {
          double predSum = 0;
          for (int j = 0; j < m_NumClasses; j++) {
    	pred[j] = m_Shrinkage * m_Classifiers[j][i].classifyInstance(instance);
    	predSum += pred[j];
          }
          predSum /= m_NumClasses;
          for (int j = 0; j < m_NumClasses; j++) {
    	Fs[j] += (pred[j] - predSum) * (m_NumClasses - 1) 
    	  / m_NumClasses;
          }
        }
    
        return probs(Fs);
      }
    



    版权声明:

  • 相关阅读:
    朴素贝叶斯分类算法原理
    DevExpress控件学习总结
    Nginx + Tomcat 配置负载均衡集群
    DotNet Core全新认识
    为何梯度反方向是函数值下降最快的方向
    理解矩阵
    C#版-Redis缓存服务器在Windows下的使用
    文本情感分类:分词 OR 不分词(3)
    文本情感分类:深度学习模型(2)
    文本情感分类:传统模型(1)
  • 原文地址:https://www.cnblogs.com/walccott/p/4956859.html
Copyright © 2011-2022 走看看