去噪自编码器背后的思想很简单. 为了迫使隐藏层单元发现更多鲁棒性好的特征, 以及阻止它学习恒等函数, 我们拿受损的输入来训练自编码器重构输入.
降噪自动编码器是自动编码器的随机版. 直观地说, 一个降噪自动编码器做两件事情: 试图对输入编码( 保存输入的信息 ), 和试图消除随机应用于自动编码器输入的损坏处理的影响. 后者则只能通过输入之间的统计相关性实现. 降噪自动编码器可以从不同的角度理解。
将自编码器类转换成去噪自编码器类, 我们需要做的是给输入增加一个随机损坏(stochastic corruption)操作.
//dA.h class dA { public: int N; int n_visible; int n_hidden; double **W; double *hbias; double *vbias; dA(int, int, int , double**, double*, double*); ~dA(); void get_corrupted_input(int*, int*, double); void get_hidden_values(int*, double*); void get_reconstructed_input(double*, double*); void train(int*, double, double); void reconstruct(int*, double*); };
//dA.cpp #include <iostream> #include <math.h> #include "dA.h" using namespace std; double uniform(double min, double max) { return rand() / (RAND_MAX + 1.0) * (max - min) + min; } int binomial(int n, double p) { if(p < 0 || p > 1) return 0; int c = 0; double r; for(int i=0; i<n; i++) { r = rand() / (RAND_MAX + 1.0); if (r < p) c++; } return c; } double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); } dA::dA(int size, int n_v, int n_h, double **w, double *hb, double *vb) { N = size; n_visible = n_v; n_hidden = n_h; if(w == NULL) { W = new double*[n_hidden]; for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible]; double a = 1.0 / n_visible; for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] = uniform(-a, a); } } } else { W = w; } if(hb == NULL) { hbias = new double[n_hidden]; for(int i=0; i<n_hidden; i++) hbias[i] = 0; } else { hbias = hb; } if(vb == NULL) { vbias = new double[n_visible]; for(int i=0; i<n_visible; i++) vbias[i] = 0; } else { vbias = vb; } } dA::~dA() { for(int i=0; i<n_hidden; i++) delete[] W[i]; delete[] W; delete[] hbias; delete[] vbias; } void dA::get_corrupted_input(int *x, int *tilde_x, double p) { for(int i=0; i<n_visible; i++) { if(x[i] == 0) { tilde_x[i] = 0; } else { tilde_x[i] = binomial(1, p); } } } // Encode void dA::get_hidden_values(int *x, double *y) { for(int i=0; i<n_hidden; i++) { y[i] = 0; for(int j=0; j<n_visible; j++) { y[i] += W[i][j] * x[j]; } y[i] += hbias[i]; y[i] = sigmoid(y[i]); } } // Decode void dA::get_reconstructed_input(double *y, double *z) { for(int i=0; i<n_visible; i++) { z[i] = 0; for(int j=0; j<n_hidden; j++) { z[i] += W[j][i] * y[j]; } z[i] += vbias[i]; z[i] = sigmoid(z[i]); } } void dA::train(int *x, double lr, double corruption_level) { int *tilde_x = new int[n_visible]; double *y = new double[n_hidden]; double *z = new double[n_visible]; double *L_vbias = new double[n_visible]; double *L_hbias = new double[n_hidden]; double p = 1 - corruption_level; get_corrupted_input(x, tilde_x, p); get_hidden_values(tilde_x, y); get_reconstructed_input(y, z); // vbias for(int i=0; i<n_visible; i++) { L_vbias[i] = x[i] - z[i]; vbias[i] += lr * L_vbias[i] / N; } // hbias for(int i=0; i<n_hidden; i++) { L_hbias[i] = 0; for(int j=0; j<n_visible; j++) { L_hbias[i] += W[i][j] * L_vbias[j]; } L_hbias[i] *= y[i] * (1 - y[i]); hbias[i] += lr * L_hbias[i] / N; } // W for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] += lr * (L_hbias[i] * tilde_x[j] + L_vbias[j] * y[i]) / N; } } delete[] L_hbias; delete[] L_vbias; delete[] z; delete[] y; delete[] tilde_x; } void dA::reconstruct(int *x, double *z) { double *y = new double[n_hidden]; get_hidden_values(x, y); get_reconstructed_input(y, z); delete[] y; } void test_dA() { srand(0); double learning_rate = 0.1; double corruption_level = 0.3; int training_epochs = 100; int train_N = 10; int test_N = 2; int n_visible = 20; int n_hidden = 5; // training data int train_X[10][20] = { {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0} }; // construct dA dA da(train_N, n_visible, n_hidden, NULL, NULL, NULL); // train for(int epoch=0; epoch<training_epochs; epoch++) { for(int i=0; i<train_N; i++) { da.train(train_X[i], learning_rate, corruption_level); } } // test data int test_X[2][20] = { {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0} }; double reconstructed_X[2][20]; // test for(int i=0; i<test_N; i++) { da.reconstruct(test_X[i], reconstructed_X[i]); for(int j=0; j<n_visible; j++) { printf("%.5f ", reconstructed_X[i][j]); } cout << endl; } cout << endl; } int main() { test_dA(); return 0; }
//SdA.h class SdA { public: int N; int n_ins; int *hidden_layer_sizes; int n_outs; int n_layers; HiddenLayer **sigmoid_layers; dA **dA_layers; LogisticRegression *log_layer; SdA(int, int, int*, int, int); ~SdA(); void pretrain(int*, double, double, int); void finetune(int*, int*, double, int); void predict(int*, double*); };
//SdA.cpp #include <iostream> #include <math.h> #include "HiddenLayer.h" #include "dA.h" #include "LogisticRegression.h" #include "SdA.h" using namespace std; double uniform(double min, double max) { return rand() / (RAND_MAX + 1.0) * (max - min) + min; } int binomial(int n, double p) { if(p < 0 || p > 1) return 0; int c = 0; double r; for(int i=0; i<n; i++) { r = rand() / (RAND_MAX + 1.0); if (r < p) c++; } return c; } double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); } // SdA SdA::SdA(int size, int n_i, int *hls, int n_o, int n_l) { int input_size; N = size; n_ins = n_i; hidden_layer_sizes = hls; n_outs = n_o; n_layers = n_l; sigmoid_layers = new HiddenLayer*[n_layers]; dA_layers = new dA*[n_layers]; // construct multi-layer for(int i=0; i<n_layers; i++) { if(i == 0) { input_size = n_ins; } else { input_size = hidden_layer_sizes[i-1]; } // construct sigmoid_layer sigmoid_layers[i] = new HiddenLayer(N, input_size, hidden_layer_sizes[i], NULL, NULL); // construct dA_layer dA_layers[i] = new dA(N, input_size, hidden_layer_sizes[i], sigmoid_layers[i]->W, sigmoid_layers[i]->b, NULL); } // layer for output using LogisticRegression log_layer = new LogisticRegression(N, hidden_layer_sizes[n_layers-1], n_outs); } SdA::~SdA() { delete log_layer; for(int i=0; i<n_layers; i++) { delete sigmoid_layers[i]; delete dA_layers[i]; } delete[] sigmoid_layers; delete[] dA_layers; } void SdA::pretrain(int *input, double lr, double corruption_level, int epochs) { int *layer_input; int prev_layer_input_size; int *prev_layer_input; int *train_X = new int[n_ins]; for(int i=0; i<n_layers; i++) { // layer-wise for(int epoch=0; epoch<epochs; epoch++) { // training epochs for(int n=0; n<N; n++) { // input x1...xN // initial input for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m]; // layer input for(int l=0; l<=i; l++) { if(l == 0) { layer_input = new int[n_ins]; for(int j=0; j<n_ins; j++) layer_input[j] = train_X[j]; } else { if(l == 1) prev_layer_input_size = n_ins; else prev_layer_input_size = hidden_layer_sizes[l-2]; prev_layer_input = new int[prev_layer_input_size]; for(int j=0; j<prev_layer_input_size; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; layer_input = new int[hidden_layer_sizes[l-1]]; sigmoid_layers[l-1]->sample_h_given_v(prev_layer_input, layer_input); delete[] prev_layer_input; } } dA_layers[i]->train(layer_input, lr, corruption_level); } } } delete[] train_X; delete[] layer_input; } void SdA::finetune(int *input, int *label, double lr, int epochs) { int *layer_input; int prev_layer_input_size; int *prev_layer_input; int *train_X = new int[n_ins]; int *train_Y = new int[n_outs]; for(int epoch=0; epoch<epochs; epoch++) { for(int n=0; n<N; n++) { // input x1...xN // initial input for(int m=0; m<n_ins; m++) train_X[m] = input[n * n_ins + m]; for(int m=0; m<n_outs; m++) train_Y[m] = label[n * n_outs + m]; // layer input for(int i=0; i<n_layers; i++) { if(i == 0) { prev_layer_input = new int[n_ins]; for(int j=0; j<n_ins; j++) prev_layer_input[j] = train_X[j]; } else { prev_layer_input = new int[hidden_layer_sizes[i-1]]; for(int j=0; j<hidden_layer_sizes[i-1]; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; } layer_input = new int[hidden_layer_sizes[i]]; sigmoid_layers[i]->sample_h_given_v(prev_layer_input, layer_input); delete[] prev_layer_input; } log_layer->train(layer_input, train_Y, lr); } // lr *= 0.95; } delete[] layer_input; delete[] train_X; delete[] train_Y; } void SdA::predict(int *x, double *y) { double *layer_input; int prev_layer_input_size; double *prev_layer_input; double linear_output; prev_layer_input = new double[n_ins]; for(int j=0; j<n_ins; j++) prev_layer_input[j] = x[j]; // layer activation for(int i=0; i<n_layers; i++) { layer_input = new double[sigmoid_layers[i]->n_out]; for(int k=0; k<sigmoid_layers[i]->n_out; k++) { linear_output = 0.0; for(int j=0; j<sigmoid_layers[i]->n_in; j++) { linear_output += sigmoid_layers[i]->W[k][j] * prev_layer_input[j]; } linear_output += sigmoid_layers[i]->b[k]; layer_input[k] = sigmoid(linear_output); } delete[] prev_layer_input; if(i < n_layers-1) { prev_layer_input = new double[sigmoid_layers[i]->n_out]; for(int j=0; j<sigmoid_layers[i]->n_out; j++) prev_layer_input[j] = layer_input[j]; delete[] layer_input; } } for(int i=0; i<log_layer->n_out; i++) { y[i] = 0; for(int j=0; j<log_layer->n_in; j++) { y[i] += log_layer->W[i][j] * layer_input[j]; } y[i] += log_layer->b[i]; } log_layer->softmax(y); delete[] layer_input; } // HiddenLayer HiddenLayer::HiddenLayer(int size, int in, int out, double **w, double *bp) { N = size; n_in = in; n_out = out; if(w == NULL) { W = new double*[n_out]; for(int i=0; i<n_out; i++) W[i] = new double[n_in]; double a = 1.0 / n_in; for(int i=0; i<n_out; i++) { for(int j=0; j<n_in; j++) { W[i][j] = uniform(-a, a); } } } else { W = w; } if(bp == NULL) { b = new double[n_out]; } else { b = bp; } } HiddenLayer::~HiddenLayer() { for(int i=0; i<n_out; i++) delete W[i]; delete[] W; delete[] b; } double HiddenLayer::output(int *input, double *w, double b) { double linear_output = 0.0; for(int j=0; j<n_in; j++) { linear_output += w[j] * input[j]; } linear_output += b; return sigmoid(linear_output); } void HiddenLayer::sample_h_given_v(int *input, int *sample) { for(int i=0; i<n_out; i++) { sample[i] = binomial(1, output(input, W[i], b[i])); } } // dA dA::dA(int size, int n_v, int n_h, double **w, double *hb, double *vb) { N = size; n_visible = n_v; n_hidden = n_h; if(w == NULL) { W = new double*[n_hidden]; for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible]; double a = 1.0 / n_visible; for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] = uniform(-a, a); } } } else { W = w; } if(hb == NULL) { hbias = new double[n_hidden]; for(int i=0; i<n_hidden; i++) hbias[i] = 0; } else { hbias = hb; } if(vb == NULL) { vbias = new double[n_visible]; for(int i=0; i<n_visible; i++) vbias[i] = 0; } else { vbias = vb; } } dA::~dA() { // for(int i=0; i<n_hidden; i++) delete[] W[i]; // delete[] W; // delete[] hbias; delete[] vbias; } void dA::get_corrupted_input(int *x, int *tilde_x, double p) { for(int i=0; i<n_visible; i++) { if(x[i] == 0) { tilde_x[i] = 0; } else { tilde_x[i] = binomial(1, p); } } } // Encode void dA::get_hidden_values(int *x, double *y) { for(int i=0; i<n_hidden; i++) { y[i] = 0; for(int j=0; j<n_visible; j++) { y[i] += W[i][j] * x[j]; } y[i] += hbias[i]; y[i] = sigmoid(y[i]); } } // Decode void dA::get_reconstructed_input(double *y, double *z) { for(int i=0; i<n_visible; i++) { z[i] = 0; for(int j=0; j<n_hidden; j++) { z[i] += W[j][i] * y[j]; } z[i] += vbias[i]; z[i] = sigmoid(z[i]); } } void dA::train(int *x, double lr, double corruption_level) { int *tilde_x = new int[n_visible]; double *y = new double[n_hidden]; double *z = new double[n_visible]; double *L_vbias = new double[n_visible]; double *L_hbias = new double[n_hidden]; double p = 1 - corruption_level; get_corrupted_input(x, tilde_x, p); get_hidden_values(tilde_x, y); get_reconstructed_input(y, z); // vbias for(int i=0; i<n_visible; i++) { L_vbias[i] = x[i] - z[i]; vbias[i] += lr * L_vbias[i] / N; } // hbias for(int i=0; i<n_hidden; i++) { L_hbias[i] = 0; for(int j=0; j<n_visible; j++) { L_hbias[i] += W[i][j] * L_vbias[j]; } L_hbias[i] *= y[i] * (1 - y[i]); hbias[i] += lr * L_hbias[i] / N; } // W for(int i=0; i<n_hidden; i++) { for(int j=0; j<n_visible; j++) { W[i][j] += lr * (L_hbias[i] * tilde_x[j] + L_vbias[j] * y[i]) / N; } } delete[] L_hbias; delete[] L_vbias; delete[] z; delete[] y; delete[] tilde_x; } void dA::reconstruct(int *x, double *z) { double *y = new double[n_hidden]; get_hidden_values(x, y); get_reconstructed_input(y, z); delete[] y; } // LogisticRegression LogisticRegression::LogisticRegression(int size, int in, int out) { N = size; n_in = in; n_out = out; W = new double*[n_out]; for(int i=0; i<n_out; i++) W[i] = new double[n_in]; b = new double[n_out]; for(int i=0; i<n_out; i++) { for(int j=0; j<n_in; j++) { W[i][j] = 0; } b[i] = 0; } } LogisticRegression::~LogisticRegression() { for(int i=0; i<n_out; i++) delete[] W[i]; delete[] W; delete[] b; } void LogisticRegression::train(int *x, int *y, double lr) { double *p_y_given_x = new double[n_out]; double *dy = new double[n_out]; for(int i=0; i<n_out; i++) { p_y_given_x[i] = 0; for(int j=0; j<n_in; j++) { p_y_given_x[i] += W[i][j] * x[j]; } p_y_given_x[i] += b[i]; } softmax(p_y_given_x); for(int i=0; i<n_out; i++) { dy[i] = y[i] - p_y_given_x[i]; for(int j=0; j<n_in; j++) { W[i][j] += lr * dy[i] * x[j] / N; } b[i] += lr * dy[i] / N; } delete[] p_y_given_x; delete[] dy; } void LogisticRegression::softmax(double *x) { double max = 0.0; double sum = 0.0; for(int i=0; i<n_out; i++) if(max < x[i]) max = x[i]; for(int i=0; i<n_out; i++) { x[i] = exp(x[i] - max); sum += x[i]; } for(int i=0; i<n_out; i++) x[i] /= sum; } void LogisticRegression::predict(int *x, double *y) { for(int i=0; i<n_out; i++) { y[i] = 0; for(int j=0; j<n_in; j++) { y[i] += W[i][j] * x[j]; } y[i] += b[i]; } softmax(y); } void test_sda() { srand(0); double pretrain_lr = 0.1; double corruption_level = 0.3; int pretraining_epochs = 1000; double finetune_lr = 0.1; int finetune_epochs = 500; int train_N = 10; int test_N = 4; int n_ins = 28; int n_outs = 2; int hidden_layer_sizes[] = {15, 15}; int n_layers = sizeof(hidden_layer_sizes) / sizeof(hidden_layer_sizes[0]); // training data int train_X[10][28] = { {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1} }; int train_Y[10][2] = { {1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1} }; // construct SdA SdA sda(train_N, n_ins, hidden_layer_sizes, n_outs, n_layers); // pretrain sda.pretrain(*train_X, pretrain_lr, corruption_level, pretraining_epochs); // finetune sda.finetune(*train_X, *train_Y, finetune_lr, finetune_epochs); // test data int test_X[4][28] = { {1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1} }; double test_Y[4][28]; // test for(int i=0; i<test_N; i++) { sda.predict(test_X[i], test_Y[i]); for(int j=0; j<n_outs; j++) { printf("%.5f ", test_Y[i][j]); } cout << endl; } } int main() { test_sda(); return 0; }
版权声明: