zoukankan      html  css  js  c++  java
  • RBM

    RBM 只有两层神经元,一层叫做显层 (visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units) 组成,用作特征检测器 (feature detectors)。

    RBM训练的几个关键点列在下面,可以见我转的博客Yusuke Sugomori 的 C 语言 Deep Learning 程序解读,原文地址http://blog.csdn.net/itplus/article/details/9079973

    对比散度算法

    即contrastive divergence,也称CD-k算法。

    Gibbs采样

    //RBM.h
    class RBM {
    
    public:
      int N;
      int n_visible;
      int n_hidden;
      double **W;
      double *hbias;
      double *vbias;
      RBM(int, int, int, double**, double*, double*);
      ~RBM();
      void contrastive_divergence(int*, double, int);
      void sample_h_given_v(int*, double*, int*);
      void sample_v_given_h(int*, double*, int*);
      double propup(int*, double*, double);
      double propdown(int*, int, double);
      void gibbs_hvh(int*, double*, int*, double*, int*);
      void reconstruct(int*, double*);
    };
    



    //RBM.cpp
    #include <iostream>
    #include <math.h>
    #include "RBM.h"
    using namespace std;
    
    double uniform(double min, double max) {
      return rand() / (RAND_MAX + 1.0) * (max - min) + min;
    }
    
    int binomial(int n, double p) {
      if(p < 0 || p > 1) return 0;
      
      int c = 0;
      double r;
      
      for(int i=0; i<n; i++) {
        r = rand() / (RAND_MAX + 1.0);
        if (r < p) c++;
      }
    
      return c;
    }
    
    double sigmoid(double x) {
      return 1.0 / (1.0 + exp(-x));
    }
    
    
    RBM::RBM(int size, int n_v, int n_h, double **w, double *hb, double *vb) {
      N = size;
      n_visible = n_v;
      n_hidden = n_h;
    
      if(w == NULL) {
        W = new double*[n_hidden];
        for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible];
        double a = 1.0 / n_visible;
    
        for(int i=0; i<n_hidden; i++) {
          for(int j=0; j<n_visible; j++) {
            W[i][j] = uniform(-a, a);
          }
        }
      } else {
        W = w;
      }
    
      if(hb == NULL) {
        hbias = new double[n_hidden];
        for(int i=0; i<n_hidden; i++) hbias[i] = 0;
      } else {
        hbias = hb;
      }
    
      if(vb == NULL) {
        vbias = new double[n_visible];
        for(int i=0; i<n_visible; i++) vbias[i] = 0;
      } else {
        vbias = vb;
      }
    }
    
    RBM::~RBM() {
      for(int i=0; i<n_hidden; i++) delete[] W[i];
      delete[] W;
      delete[] hbias;
      delete[] vbias;
    }
    
    
    void RBM::contrastive_divergence(int *input, double lr, int k) {
      double *ph_mean = new double[n_hidden];
      int *ph_sample = new int[n_hidden];
      double *nv_means = new double[n_visible];
      int *nv_samples = new int[n_visible];
      double *nh_means = new double[n_hidden];
      int *nh_samples = new int[n_hidden];
    
      /* CD-k */
      sample_h_given_v(input, ph_mean, ph_sample);
    
      for(int step=0; step<k; step++) {
        if(step == 0) {
          gibbs_hvh(ph_sample, nv_means, nv_samples, nh_means, nh_samples);
        } else {
          gibbs_hvh(nh_samples, nv_means, nv_samples, nh_means, nh_samples);
        }
      }
    
      for(int i=0; i<n_hidden; i++) {
        for(int j=0; j<n_visible; j++) {
          // W[i][j] += lr * (ph_sample[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
          W[i][j] += lr * (ph_mean[i] * input[j] - nh_means[i] * nv_samples[j]) / N;
        }
        hbias[i] += lr * (ph_sample[i] - nh_means[i]) / N;
      }
    
      for(int i=0; i<n_visible; i++) {
        vbias[i] += lr * (input[i] - nv_samples[i]) / N;
      }
    
      delete[] ph_mean;
      delete[] ph_sample;
      delete[] nv_means;
      delete[] nv_samples;
      delete[] nh_means;
      delete[] nh_samples;
    }
    
    void RBM::sample_h_given_v(int *v0_sample, double *mean, int *sample) {
      for(int i=0; i<n_hidden; i++) {
        mean[i] = propup(v0_sample, W[i], hbias[i]);
        sample[i] = binomial(1, mean[i]);
      }
    }
    
    void RBM::sample_v_given_h(int *h0_sample, double *mean, int *sample) {
      for(int i=0; i<n_visible; i++) {
        mean[i] = propdown(h0_sample, i, vbias[i]);
        sample[i] = binomial(1, mean[i]);
      }
    }
    
    double RBM::propup(int *v, double *w, double b) {
      double pre_sigmoid_activation = 0.0;
      for(int j=0; j<n_visible; j++) {
        pre_sigmoid_activation += w[j] * v[j];
      }
      pre_sigmoid_activation += b;
      return sigmoid(pre_sigmoid_activation);
    }
    
    double RBM::propdown(int *h, int i, double b) {
      double pre_sigmoid_activation = 0.0;
      for(int j=0; j<n_hidden; j++) {
        pre_sigmoid_activation += W[j][i] * h[j];
      }
      pre_sigmoid_activation += b;
      return sigmoid(pre_sigmoid_activation);
    }
    
    void RBM::gibbs_hvh(int *h0_sample, double *nv_means, int *nv_samples, 
                        double *nh_means, int *nh_samples) {
      sample_v_given_h(h0_sample, nv_means, nv_samples);
      sample_h_given_v(nv_samples, nh_means, nh_samples);
    }
    
    void RBM::reconstruct(int *v, double *reconstructed_v) {
      double *h = new double[n_hidden];
      double pre_sigmoid_activation;
    
      for(int i=0; i<n_hidden; i++) {
        h[i] = propup(v, W[i], hbias[i]);
      }
    
      for(int i=0; i<n_visible; i++) {
        pre_sigmoid_activation = 0.0;
        for(int j=0; j<n_hidden; j++) {
          pre_sigmoid_activation += W[j][i] * h[j];
        }
        pre_sigmoid_activation += vbias[i];
    
        reconstructed_v[i] = sigmoid(pre_sigmoid_activation);
      }
    
      delete[] h;
    }
    
    
    void test_rbm() {
      srand(0);
    
      double learning_rate = 0.1;
      int training_epochs = 1000;
      int k = 1;
      
      int train_N = 6;
      int test_N = 2;
      int n_visible = 6;
      int n_hidden = 3;
    
      // training data
      int train_X[6][6] = {
        {1, 1, 1, 0, 0, 0},
        {1, 0, 1, 0, 0, 0},
        {1, 1, 1, 0, 0, 0},
        {0, 0, 1, 1, 1, 0},
        {0, 0, 1, 0, 1, 0},
        {0, 0, 1, 1, 1, 0}
      };
    
    
      // construct RBM
      RBM rbm(train_N, n_visible, n_hidden, NULL, NULL, NULL);
    
      // train
      for(int epoch=0; epoch<training_epochs; epoch++) {
        for(int i=0; i<train_N; i++) {
          rbm.contrastive_divergence(train_X[i], learning_rate, k);
        }
      }
    
      // test data
      int test_X[2][6] = {
        {1, 1, 0, 0, 0, 0},
        {0, 0, 0, 1, 1, 0}
      };
      double reconstructed_X[2][6];
    
    
      // test
      for(int i=0; i<test_N; i++) {
        rbm.reconstruct(test_X[i], reconstructed_X[i]);
        for(int j=0; j<n_visible; j++) {
          printf("%.5f ", reconstructed_X[i][j]);
        }
        cout << endl;
      }
    
    }
    
    
    
    int main() {
      test_rbm();
      return 0;
    }


    版权声明:

  • 相关阅读:
    Mysql命令下导出select查询数据之 select ... into outfile方法
    接口调试工具Postman之自动同步Chrome cookies,实现自动登陆验证
    PHP函数file_get_contents()使用 https 协议时报错:SSL operation failed
    MySQL中连接超时自动断开的解决方案
    UEditor富文本WEB编辑器设置代码高亮
    Laravel 自定义公共函数全局使用,并设置自定加载
    Laravel 解决blade模板转义html标签问题
    PHP 高效导入导出Excel(csv)方法之fgetcsv()和fputcsv()函数
    Mysql命令行tab自动补全方法
    PHP利用get_headers()函数判断远程的url地址是否有效
  • 原文地址:https://www.cnblogs.com/walccott/p/4957065.html
Copyright © 2011-2022 走看看