zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #95 (Div. 2) D.Subway

    题目链接:http://codeforces.com/problemset/problem/131/D

    思路: 题目的意思是说给定一个无向图,求图中的顶点到环上顶点的最短距离(有且仅有一个环,并且环上顶点的距离不计)。

    一开始我是直接用Tarjan求的无向图的双连通分量,然后标记连通分量上的点(如果某一个连通分量上的顶点的个数大于1,那么就是环了,其余的都只有一个点),然后即使重新建图,spfa求最短路径。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <stack>
    #include <queue>
    #define REP(i, a, b) for (int i = (a); i < (b); ++i)
    #define FOR(i, a, b) for (int i = (a); i <= (b); ++i)
    using namespace std;
    
    const int MAX_N = (3000 + 300);
    int dfn[MAX_N], low[MAX_N], cnt, N, _count, color[MAX_N];
    int st, dist[MAX_N];
    bool mark[MAX_N];
    vector<int > g[MAX_N], reg[MAX_N];
    stack<int > S;
    
    void Tarjan(int u, int father)
    {
        low[u] = dfn[u] = ++cnt;
        S.push(u);
        mark[u] = true;
        REP(i, 0, (int)g[u].size()) {
            int v = g[u][i];
            if (father == v) continue;
            if (dfn[v] == 0) {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
            } else if (mark[v]) {
                low[u] = min(low[u], dfn[v]);
            }
        }
        if (low[u] == dfn[u]) {
            int x, num = 0;
            ++_count;
            do {
                x = S.top();
                S.pop();
                mark[x] = false;
                color[x] = _count;
                ++num;
            } while (x != u);
            if (num > 1) st = _count;
        }
    }
    
    void spfa(int st)
    {
        queue<int > que;
        memset(dist, 0x3f, sizeof(dist));
        memset(mark, false, sizeof(mark));
        dist[st] = 0;
        que.push(st);
        while (!que.empty()) {
            int u = que.front();
            que.pop();
            REP(i, 0, (int)reg[u].size()) {
                int v = reg[u][i];
                if (dist[u] + 1 < dist[v]) {
                    dist[v] = dist[u] + 1;
                    if (!mark[v]) {
                        mark[v] = true; que.push(v);
                    }
                }
            }
        }
    }
    
    int main()
    {
        while (cin >> N) {
            FOR(i, 1, N) g[i].clear(), reg[i].clear();
            FOR(i, 1, N) {
                int u, v; cin >> u >> v;
                g[u].push_back(v);
                g[v].push_back(u);
            }
            cnt = _count = 0;
            memset(dfn, 0, sizeof(dfn));
            memset(mark, false, sizeof(mark));
            FOR(i, 1, N) if (!dfn[i]) Tarjan(i, -1);
            FOR(u, 1, N) {
                REP(i, 0, (int)g[u].size()) {
                    int v = g[u][i];
                    if (color[u] != color[v]) reg[color[u]].push_back(color[v]), reg[color[v]].push_back(color[u]);
                }
            }
            spfa(st);
            FOR(i, 1, N) {
                cout << dist[color[i]];
                if (i == N) cout << endl;
                else cout << " ";
            }
        }
        return 0;
    }
    
    
    
    
    
    
    

    后来我发现自己想的太复杂了,其实只要一遍dfs就能求出这个环上的点了,具体的做法是从某一点开始深搜,然后如果遇上之前搜过的点,那么说明形成一个环,用一个变量记录这个点,然后回退的时候判断是否遇到过这个点,如果没有遇到过,就把回退路径上的点都标记为环上的点,否则,继续回退。最后即使一遍bfs就可以求出最短路径。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #define REP(i, a, b) for (int i = (a); i < (b); ++i)
    #define FOR(i, a, b) for (int i = (a); i <= (b); ++i)
    using namespace std;
    
    const int MAX_N = (3000 + 300);
    int N, flag[MAX_N], dist[MAX_N], mark[MAX_N], found, st, Ok;
    vector<int > g[MAX_N];
    
    void dfs(int u, int father)
    {
        mark[u] = true;
        REP(i, 0, (int)g[u].size()) {
            int v = g[u][i];
            if (v == father) continue;
            if (!mark[v]) dfs(v, u);
            else { found = 1; st = v; flag[u] = 1; return; }
    
            if (found) {
                if (Ok) return;
                if (st == u) Ok = 1;
                flag[u] = 1;
                return;
            }
        }
    }
    
    void bfs(int st)
    {
        queue<int > que;
        memset(mark, false, sizeof(mark));
        mark[st] = true;
        dist[st] = 0;
        que.push(st);
        while (!que.empty()) {
            int u = que.front();
            que.pop();
            REP(i, 0, (int)g[u].size()) {
                int v = g[u][i];
                if (mark[v]) continue;
                mark[v] = true;
                if (flag[v]) dist[v] = 0;
                else dist[v] = dist[u] + 1;
                que.push(v);
            }
        }
    }
    
    int main()
    {
        while (cin >> N) {
            FOR(i, 1, N) g[i].clear(), flag[i] = mark[i] = 0;
            FOR(i, 1, N) {
                int u, v; cin >> u >> v;
                g[u].push_back(v);
                g[v].push_back(u);
            }
            found = Ok = 0;
            dfs(1, 1);
            bfs(st);
            FOR(i, 1, N) {
                cout << dist[i];
                if (i == N) cout << endl;
                else cout << " ";
            }
        }
        return 0;
    }
    
    


  • 相关阅读:
    转+更新 .NET中实践TDD
    解决方案:.net 4.0 下 Virtual Directory下如何部署一个作为Virtual Directory的Web Service
    knockout.js在线教程
    asp.net viewstate的最新理解
    转:什么是DIP、IoC、DI
    Common Infrastructure Libraries for .NET(1)Common.Logging Framework
    用Quartz.NET实现任务调度
    Common Infrastructure Libraries for .NET(2)ELMAH
    webots自学笔记(一)软件界面和简单模型仿真
    hdu 1753 大明A+B
  • 原文地址:https://www.cnblogs.com/wally/p/4477074.html
Copyright © 2011-2022 走看看