zoukankan      html  css  js  c++  java
  • 【一起学源码-微服务】Hystrix 源码二:Hystrix核心流程:Hystix非降级逻辑流程梳理

    说明

    原创不易,如若转载 请标明来源!

    欢迎关注本人微信公众号:壹枝花算不算浪漫
    更多内容也可查看本人博客:一枝花算不算浪漫

    前言

    前情回顾

    上一讲我们讲了配置了feign.hystrix.enabled=true之后,默认的Targeter就会构建成HystrixTargter, 然后通过对应的HystrixInvocationHandler 生成对应的动态代理。

    image.png

    本讲目录

    这一讲开始讲解Hystrix相关代码,当然还是基于上一个组件Feign的基础上开始讲解的,这里默认你已经对Feign有过大致了解。

    目录如下:

    1. 线程池初始化过程
    2. HystrixCommand通过线程池执行原理

    由于这里面代码比较多,所以我都是将一些主要核心代码发出来,这里后面会汇总一个流程图,可以参考流程图 自己一点点调试。

    这里建议在回调的地方都加上断点,而且修改feign和hystrix超时时间,浏览器发送请求后,一步步debug代码。

    源码分析

    线程池初始化过程

    上一讲已经讲过激活Hystrix后,构造的InvocationHandler为HystrixInvocationHandler,所以当调用FeignClient服务实例的时候,会先执行HystrixInvocationHandler.invoke()方法,这里我们先跟进这个方法:

    final class HystrixInvocationHandler implements InvocationHandler {
    
    	@Override
    	public Object invoke(final Object proxy, final Method method, final Object[] args)
    	        throws Throwable {
    
    	    // 构建一个HystrixCommand
    	    // HystrixCommand构造参数需要Setter对象
    	    HystrixCommand<Object> hystrixCommand = new HystrixCommand<Object>(setterMethodMap.get(method)) {
    	        @Override
    	        protected Object run() throws Exception {
    	            try {
    	            	// 执行SynchronousMethodHandler.invoke方法
    	                return HystrixInvocationHandler.this.dispatch.get(method).invoke(args);
    	            } catch (Exception e) {
    	                throw e;
    	            } catch (Throwable t) {
    	                throw (Error) t;
    	            }
    	        }
    	    }
    
    	    // 省略部分代码...
    
    	    return hystrixCommand.execute();
    	}
    }
    

    这里主要是构造HystrixCommand,我们先看看它的构造函数以及线程池池初始化的代码:

    public abstract class HystrixCommand<R> extends AbstractCommand<R> implements HystrixExecutable<R>, HystrixInvokableInfo<R>, HystrixObservable<R> {
    
    	protected HystrixCommand(HystrixCommandGroupKey group) {
    	    super(group, null, null, null, null, null, null, null, null, null, null, null);
    	}
    }
    
    abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {
    	protected AbstractCommand(HystrixCommandGroupKey group, HystrixCommandKey key, HystrixThreadPoolKey threadPoolKey, HystrixCircuitBreaker circuitBreaker, HystrixThreadPool threadPool,
                HystrixCommandProperties.Setter commandPropertiesDefaults, HystrixThreadPoolProperties.Setter threadPoolPropertiesDefaults,
                HystrixCommandMetrics metrics, TryableSemaphore fallbackSemaphore, TryableSemaphore executionSemaphore,
                HystrixPropertiesStrategy propertiesStrategy, HystrixCommandExecutionHook executionHook) {
    
            this.commandGroup = initGroupKey(group);
            this.commandKey = initCommandKey(key, getClass());
            this.properties = initCommandProperties(this.commandKey, propertiesStrategy, commandPropertiesDefaults);
            this.threadPoolKey = initThreadPoolKey(threadPoolKey, this.commandGroup, this.properties.executionIsolationThreadPoolKeyOverride().get());
            this.metrics = initMetrics(metrics, this.commandGroup, this.threadPoolKey, this.commandKey, this.properties);
            this.circuitBreaker = initCircuitBreaker(this.properties.circuitBreakerEnabled().get(), circuitBreaker, this.commandGroup, this.commandKey, this.properties, this.metrics);
            // 初始化线程池
            this.threadPool = initThreadPool(threadPool, this.threadPoolKey, threadPoolPropertiesDefaults);
    
          // 省略部分代码...
        }
    
        private static HystrixThreadPool initThreadPool(HystrixThreadPool fromConstructor, HystrixThreadPoolKey threadPoolKey, HystrixThreadPoolProperties.Setter threadPoolPropertiesDefaults) {
            if (fromConstructor == null) {
                // get the default implementation of HystrixThreadPool
                return HystrixThreadPool.Factory.getInstance(threadPoolKey, threadPoolPropertiesDefaults);
            } else {
                return fromConstructor;
            }
        }
    }
    
    public interface HystrixThreadPool {
    	final static ConcurrentHashMap<String, HystrixThreadPool> threadPools = new ConcurrentHashMap<String, HystrixThreadPool>();
    
    	static HystrixThreadPool getInstance(HystrixThreadPoolKey threadPoolKey, HystrixThreadPoolProperties.Setter propertiesBuilder) {
            // 这个线程池的key就是我们feignClient定义的value名称,其他服务的projectName
            // 在我们的demo中:key = serviceA
            String key = threadPoolKey.name();
    
            // threadPools是一个map,key就是serviceA
            HystrixThreadPool previouslyCached = threadPools.get(key);
            if (previouslyCached != null) {
                return previouslyCached;
            }
    
            // 初始化线程池
            synchronized (HystrixThreadPool.class) {
                if (!threadPools.containsKey(key)) {
                    threadPools.put(key, new HystrixThreadPoolDefault(threadPoolKey, propertiesBuilder));
                }
            }
            return threadPools.get(key);
        }
    }
    
    
    public abstract class HystrixThreadPoolProperties {
    	/* defaults */
        static int default_coreSize = 10;
        static int default_maximumSize = 10;
        static int default_keepAliveTimeMinutes = 1;
        static int default_maxQueueSize = -1;            
        static boolean default_allow_maximum_size_to_diverge_from_core_size = false;
        static int default_queueSizeRejectionThreshold = 5;
        static int default_threadPoolRollingNumberStatisticalWindow = 10000;
        static int default_threadPoolRollingNumberStatisticalWindowBuckets = 10;
    
        // 省略部分代码...
    }
    

    这里主要是初始化线程池的逻辑,从HystrixCommand一直到HystrixThreadPoolProperties。这里的threadPools 是一个Map,一个serviceName会对应一个线程池。

    线程池的默认配置都在HystrixThreadPoolProperties中。线程池的核心线程和最大线程数都是10,队列的大小为-1,这里意思是不使用队列。

    HystrixCommand构造函数需要接收一个Setter对象,Setter中包含两个很重要的属性,groupKeycommandKey, 这里看下Setter是如何构造的:

    final class HystrixInvocationHandler implements InvocationHandler {
    
    	HystrixInvocationHandler(Target<?> target, Map<Method, MethodHandler> dispatch,
                               SetterFactory setterFactory, FallbackFactory<?> fallbackFactory) {
    	    this.target = checkNotNull(target, "target");
    	    this.dispatch = checkNotNull(dispatch, "dispatch");
    	    this.fallbackFactory = fallbackFactory;
    	    this.fallbackMethodMap = toFallbackMethod(dispatch);
    	    this.setterMethodMap = toSetters(setterFactory, target, dispatch.keySet());
    	}
    
    	static Map<Method, Setter> toSetters(SetterFactory setterFactory, Target<?> target,
                                           Set<Method> methods) {
    	    Map<Method, Setter> result = new LinkedHashMap<Method, Setter>();
    	    for (Method method : methods) {
    	        method.setAccessible(true);
    	        result.put(method, setterFactory.create(target, method));
    	    }
    	    return result;
    	}
    }
    
    public interface SetterFactory {
    	HystrixCommand.Setter create(Target<?> target, Method method);
    	final class Default implements SetterFactory {
    		@Override
    		public HystrixCommand.Setter create(Target<?> target, Method method) {
    			// groupKey既是调用的服务服务名称:serviceA
    		    String groupKey = target.name();
    		    // commandKey即是方法的名称+入参定义等,一个commandKey能够确定这个类中唯一的一个方法
    		    String commandKey = Feign.configKey(target.type(), method);
    		    return HystrixCommand.Setter
    		        .withGroupKey(HystrixCommandGroupKey.Factory.asKey(groupKey))
    		        .andCommandKey(HystrixCommandKey.Factory.asKey(commandKey));
    		    }
    		}
    	}
    }
    

    构建一个HystrixCommand时必须要传入这两个参数。

    1. groupKey: 就是调用的服务名称,例如我们demo中的ServiceA,groupKey对应着一个线程池。
    2. commandKey: 一个FeignClient接口中的一个方法就是一个commandKey, 其组成为方法名和入参等信息。

    groupkeycommandKey是一对多的关系,例如ServiceA中的2个方法,那么groupKey就对应着这个ServiceA中的2个commandKey。

    groupKey -> target.name() -> ServiceA -> @FeignClient注解里设置的服务名称

    commanKey -> ServiceAFeignClient#sayHello(String)

    这里回调函数执行HystrixInvocationHandler.this.dispatch.get(method).invoke(args) 其实就是执行SynchronousMethodHandler.invoke() 方法了。但是什么时候才会回调回来呢?后面接着看吧。

    HystrixCommand通过线程池执行原理

    上面已经看了线程池的初始化过程,当一个服务第一次被调用的时候,会判断threadPools (数据结构为ConcurrentHashMap) 中是否存在这个serviceName对应的线程池,如果没有的话则会初始化一个对应的线程池。线程池默认配置属性在HystrixThreadPoolProperties中可以看到。

    Hystrix线程池默认是不使用队列进行线程排队的,核心线程数为10。接下来我们看看创建HystrixCommand后,线程池是如何将HystrixCommand 命令提交的:

    public abstract class HystrixCommand<R> extends AbstractCommand<R> implements HystrixExecutable<R>, HystrixInvokableInfo<R>, HystrixObservable<R> {
    	public R execute() {
            try {
                return queue().get();
            } catch (Exception e) {
                throw Exceptions.sneakyThrow(decomposeException(e));
            }
        }
    
        public Future<R> queue() {
            final Future<R> delegate = toObservable().toBlocking().toFuture();
        	
            final Future<R> f = new Future<R>() {
    
                @Override
                public boolean cancel(boolean mayInterruptIfRunning) {
                    if (delegate.isCancelled()) {
                        return false;
                    }
    
                    if (HystrixCommand.this.getProperties().executionIsolationThreadInterruptOnFutureCancel().get()) {
                        interruptOnFutureCancel.compareAndSet(false, mayInterruptIfRunning);
            		}
    
                    final boolean res = delegate.cancel(interruptOnFutureCancel.get());
    
                    if (!isExecutionComplete() && interruptOnFutureCancel.get()) {
                        final Thread t = executionThread.get();
                        if (t != null && !t.equals(Thread.currentThread())) {
                            t.interrupt();
                        }
                    }
    
                    return res;
    			}
    
                @Override
                public boolean isCancelled() {
                    return delegate.isCancelled();
    			}
    
                @Override
                public boolean isDone() {
                    return delegate.isDone();
    			}
    
                @Override
                public R get() throws InterruptedException, ExecutionException {
                    return delegate.get();
                }
    
                @Override
                public R get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
                    return delegate.get(timeout, unit);
                }
            	
            };
    
            if (f.isDone()) {
                try {
                    f.get();
                    return f;
                } catch (Exception e) {
                    Throwable t = decomposeException(e);
                    if (t instanceof HystrixBadRequestException) {
                        return f;
                    } else if (t instanceof HystrixRuntimeException) {
                        HystrixRuntimeException hre = (HystrixRuntimeException) t;
                        switch (hre.getFailureType()) {
    					case COMMAND_EXCEPTION:
    					case TIMEOUT:
    						// we don't throw these types from queue() only from queue().get() as they are execution errors
    						return f;
    					default:
    						// these are errors we throw from queue() as they as rejection type errors
    						throw hre;
    					}
                    } else {
                        throw Exceptions.sneakyThrow(t);
                    }
                }
            }
    
            return f;
        }
    }
    

    这里又是一堆的回调函数,我们可以在每个回调函数中打上断点,然后一点点调试。
    这里主要是通过toObservable()方法构造了一个Future<R>, 然后包装此Future,添加了中断等逻辑,后面使用f.get() 阻塞获取线程执行结果,最后返回Future对象。

    这里我们的重点在于寻找哪里将HystrixCommand丢入线程池,然后返回一个Future的。
    接着往后跟进代码:

    abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {
    	public Observable<R> toObservable() {
    		// _cmd就是HystrixInvocationHandler对象
    		// 里面包含要请求的method信息,threadPool信息,groupKey,commandKey等信息
            final AbstractCommand<R> _cmd = this;
            final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() {
                @Override
                public Observable<R> call() {
                    if (commandState.get().equals(CommandState.UNSUBSCRIBED)) {
                        return Observable.never();
                    }
                    return applyHystrixSemantics(_cmd);
                }
            };
    
            // 省略部分回调函数代码...
    
            return Observable.defer(new Func0<Observable<R>>() {
                @Override
                public Observable<R> call() {
                	// 是否使用请求缓存,默认为false
                    final boolean requestCacheEnabled = isRequestCachingEnabled();
                    // 请求缓存相关
                    final String cacheKey = getCacheKey();
    
                    // 省略部分代码...
    
                    Observable<R> hystrixObservable =
                            Observable.defer(applyHystrixSemantics)
                                    .map(wrapWithAllOnNextHooks);
    
                    Observable<R> afterCache;
    
                    // put in cache
                    if (requestCacheEnabled && cacheKey != null) {
                        // 省略部分代码...
                    } else {
                        afterCache = hystrixObservable;
                    }
    
                    return afterCache
                            .doOnTerminate(terminateCommandCleanup)
                            .doOnUnsubscribe(unsubscribeCommandCleanup)
                            .doOnCompleted(fireOnCompletedHook);
                }
            });
        }
    }
    

    toObservable()是比较核心的代码,这里也是定义了很多回调函数,上面代码做了精简,留下一些核心逻辑,在defer()中构造返回了一个Observable对象,这个Observable是包含上面的一些回调函数的。

    通过debug代码,这里会直接执行到applyHystrixSemantics这个构造函数Func0中的call()方法中,通过语意 我们可以大致猜到这个函数的意思:应用Hystrix语义
    接着往下跟进代码:

    abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {
    	private Observable<R> applyHystrixSemantics(final AbstractCommand<R> _cmd) {
            executionHook.onStart(_cmd);
            // 判断是否短路
            if (circuitBreaker.attemptExecution()) {
                final TryableSemaphore executionSemaphore = getExecutionSemaphore();
                final AtomicBoolean semaphoreHasBeenReleased = new AtomicBoolean(false);
                // 如果不使用Semaphore配置,那么tryAcquire使用的是TryableSemaphoreNoOp中的方法,返回true
                if (executionSemaphore.tryAcquire()) {
                    try {
                        /* used to track userThreadExecutionTime */
                        executionResult = executionResult.setInvocationStartTime(System.currentTimeMillis());
                        return executeCommandAndObserve(_cmd)
                                .doOnError(markExceptionThrown)
                                .doOnTerminate(singleSemaphoreRelease)
                                .doOnUnsubscribe(singleSemaphoreRelease);
                    } catch (RuntimeException e) {
                        return Observable.error(e);
                    }
                } else {
                    return handleSemaphoreRejectionViaFallback();
                }
            } else {
                return handleShortCircuitViaFallback();
            }
        }
    }
    

    这里面我们默认使用的线程池的隔离配置,所以executionSemaphore.tryAcquire()都会返回true,这里有个重要的方法:executeCommandAndObserve(_cmd), 我们继续往后跟进这个方法:

    abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {
    	private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) {
            final HystrixRequestContext currentRequestContext = HystrixRequestContext.getContextForCurrentThread();
    
            // 省略部分回调函数...
    
            Observable<R> execution;
            // 默认配置timeOutEnabled为true
            if (properties.executionTimeoutEnabled().get()) {
            	// 执行指定的隔离执行命令
                execution = executeCommandWithSpecifiedIsolation(_cmd)
                        .lift(new HystrixObservableTimeoutOperator<R>(_cmd));
            } else {
                execution = executeCommandWithSpecifiedIsolation(_cmd);
            }
    
            return execution.doOnNext(markEmits)
                    .doOnCompleted(markOnCompleted)
                    .onErrorResumeNext(handleFallback)
                    .doOnEach(setRequestContext);
        }
    }
    

    对于Hystrix来说,默认是开启超时机制的,这里会执行executeCommandWithSpecifiedIsolation(), 返回一个执行的Observable.还是通过方法名我们可以猜测这个方法是:使用指定的隔离执行命令
    继续往里面跟进:

    abstract class AbstractCommand<R> implements HystrixInvokableInfo<R>, HystrixObservable<R> {
    	private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) {
            if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) {
                // mark that we are executing in a thread (even if we end up being rejected we still were a THREAD execution and not SEMAPHORE)
                return Observable.defer(new Func0<Observable<R>>() {
                    @Override
                    public Observable<R> call() {
                        executionResult = executionResult.setExecutionOccurred();
                        if (!commandState.compareAndSet(CommandState.OBSERVABLE_CHAIN_CREATED, CommandState.USER_CODE_EXECUTED)) {
                            return Observable.error(new IllegalStateException("execution attempted while in state : " + commandState.get().name()));
                        }
    
                        metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.THREAD);
    
                        if (isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT) {
                            return Observable.error(new RuntimeException("timed out before executing run()"));
                        }
                        if (threadState.compareAndSet(ThreadState.NOT_USING_THREAD, ThreadState.STARTED)) {
                            //we have not been unsubscribed, so should proceed
                            HystrixCounters.incrementGlobalConcurrentThreads();
                            threadPool.markThreadExecution();
                            // store the command that is being run
                            endCurrentThreadExecutingCommand = Hystrix.startCurrentThreadExecutingCommand(getCommandKey());
                            executionResult = executionResult.setExecutedInThread();
                            try {
                                executionHook.onThreadStart(_cmd);
                                executionHook.onRunStart(_cmd);
                                executionHook.onExecutionStart(_cmd);
                                return getUserExecutionObservable(_cmd);
                            } catch (Throwable ex) {
                                return Observable.error(ex);
                            }
                        } else {
                            //command has already been unsubscribed, so return immediately
                            return Observable.error(new RuntimeException("unsubscribed before executing run()"));
                        }
                    }
                }).subscribeOn(threadPool.getScheduler(new Func0<Boolean>() {
                    @Override
                    public Boolean call() {
                        return properties.executionIsolationThreadInterruptOnTimeout().get() && _cmd.isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT;
                    }
                }));
            }
        }
    }
    

    这里就是我们千辛万苦需要找的核心方法了,里面仍然是一个回调函数,通过断点调试,这里会先执行:subscribeOn回调函数,执行threadPool.getScheduler方法,我们进一步往后跟进:

    public interface HystrixThreadPool {
    	@Override
    	public Scheduler getScheduler(Func0<Boolean> shouldInterruptThread) {
    	    touchConfig();
    	    return new HystrixContextScheduler(HystrixPlugins.getInstance().getConcurrencyStrategy(), this, shouldInterruptThread);
    	}
    
    	private void touchConfig() {
            final int dynamicCoreSize = properties.coreSize().get();
            final int configuredMaximumSize = properties.maximumSize().get();
            int dynamicMaximumSize = properties.actualMaximumSize();
            final boolean allowSizesToDiverge = properties.getAllowMaximumSizeToDivergeFromCoreSize().get();
            boolean maxTooLow = false;
    
            // 动态调整最大线程池的数量
            if (allowSizesToDiverge && configuredMaximumSize < dynamicCoreSize) {
                //if user sets maximum < core (or defaults get us there), we need to maintain invariant of core <= maximum
                dynamicMaximumSize = dynamicCoreSize;
                maxTooLow = true;
            }
    
            // In JDK 6, setCorePoolSize and setMaximumPoolSize will execute a lock operation. Avoid them if the pool size is not changed.
            if (threadPool.getCorePoolSize() != dynamicCoreSize || (allowSizesToDiverge && threadPool.getMaximumPoolSize() != dynamicMaximumSize)) {
                if (maxTooLow) {
                    logger.error("Hystrix ThreadPool configuration for : " + metrics.getThreadPoolKey().name() + " is trying to set coreSize = " +
                            dynamicCoreSize + " and maximumSize = " + configuredMaximumSize + ".  Maximum size will be set to " +
                            dynamicMaximumSize + ", the coreSize value, since it must be equal to or greater than the coreSize value");
                }
                threadPool.setCorePoolSize(dynamicCoreSize);
                threadPool.setMaximumPoolSize(dynamicMaximumSize);
            }
    
            threadPool.setKeepAliveTime(properties.keepAliveTimeMinutes().get(), TimeUnit.MINUTES);
        }
    }
    
    public class HystrixContextScheduler extends Scheduler {
    	public HystrixContextScheduler(HystrixConcurrencyStrategy concurrencyStrategy, HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
            this.concurrencyStrategy = concurrencyStrategy;
            this.threadPool = threadPool;
            this.actualScheduler = new ThreadPoolScheduler(threadPool, shouldInterruptThread);
        }
    
        @Override
        public Worker createWorker() {
        	// 构建一个默认的Worker
            return new HystrixContextSchedulerWorker(actualScheduler.createWorker());
        }
    
        private static class ThreadPoolScheduler extends Scheduler {
    
            private final HystrixThreadPool threadPool;
            private final Func0<Boolean> shouldInterruptThread;
    
            public ThreadPoolScheduler(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
                this.threadPool = threadPool;
                this.shouldInterruptThread = shouldInterruptThread;
            }
    
            @Override
            public Worker createWorker() {
            	// 默认的worker为:ThreadPoolWorker
                return new ThreadPoolWorker(threadPool, shouldInterruptThread);
            }
    
        }
    
    	private class HystrixContextSchedulerWorker extends Worker {
    	    // 执行schedule方法
    	    @Override
    	    public Subscription schedule(Action0 action) {
    	        if (threadPool != null) {
    	            if (!threadPool.isQueueSpaceAvailable()) {
    	                throw new RejectedExecutionException("Rejected command because thread-pool queueSize is at rejection threshold.");
    	            }
    	        }
    	        // 默认的worker为:ThreadPoolWorker
    	        return worker.schedule(new HystrixContexSchedulerAction(concurrencyStrategy, action));
    	    }
    	}
    
    
    	// 执行command的核心类
    	private static class ThreadPoolWorker extends Worker {
    
            private final HystrixThreadPool threadPool;
            private final CompositeSubscription subscription = new CompositeSubscription();
            private final Func0<Boolean> shouldInterruptThread;
    
            public ThreadPoolWorker(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
                this.threadPool = threadPool;
                this.shouldInterruptThread = shouldInterruptThread;
            }
    
            @Override
            public void unsubscribe() {
                subscription.unsubscribe();
            }
    
            @Override
            public boolean isUnsubscribed() {
                return subscription.isUnsubscribed();
            }
    
            @Override
            public Subscription schedule(final Action0 action) {
                if (subscription.isUnsubscribed()) {
                    // don't schedule, we are unsubscribed
                    return Subscriptions.unsubscribed();
                }
    
                // This is internal RxJava API but it is too useful.
                ScheduledAction sa = new ScheduledAction(action);
    
                subscription.add(sa);
                sa.addParent(subscription);
    
                ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
                FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
                sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));
    
                return sa;
            }
    
            @Override
            public Subscription schedule(Action0 action, long delayTime, TimeUnit unit) {
                throw new IllegalStateException("Hystrix does not support delayed scheduling");
            }
        }
    }
    

    touchConfig() 方法主要是重新设置最大线程池actualMaximumSize的,这里默认的allowMaximumSizeToDivergeFromCoreSize是false。

    HystrixContextScheduler类中有HystrixContextSchedulerWorkerThreadPoolSchedulerThreadPoolWorker 这几个内部类。看看它们的作用:

    1. HystrixContextSchedulerWorker: 对外提供schedule()方法,这里会判断线程池队列是否已经满,如果满了这会抛出异常:Rejected command because thread-pool queueSize is at rejection threshold。 如果配置的队列大小为-1 则默认返回true。

    2. ThreadPoolScheduler:执行createWorker()方法,默认使用ThreadPoolWorker()

    3. ThreadPoolWorker:执行command的核心逻辑

    private static class ThreadPoolWorker extends Worker {
    
        private final HystrixThreadPool threadPool;
        private final CompositeSubscription subscription = new CompositeSubscription();
        private final Func0<Boolean> shouldInterruptThread;
    
        @Override
        public Subscription schedule(final Action0 action) {
            if (subscription.isUnsubscribed()) {
                return Subscriptions.unsubscribed();
            }
    
            ScheduledAction sa = new ScheduledAction(action);
            subscription.add(sa);
            sa.addParent(subscription);
            // 获取线程池
            ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
            // 将包装后的HystrixCommand submit到线程池,然后返回FutureTask
            FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
            sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));
    
            return sa;
        }
    }
    

    原来一个command就是在这里被提交到线程池的,再次回到AbstractCommand.executeCommandWithSpecifiedIsolation()方法中,这里会回调到这个回调函数的call()方法中,这里一路执行逻辑如下:

    getUserExecutionObservable(_cmd)>getExecutionObservable()>hystrixCommand.run()==>SynchronousMethodHandler.invoke()

    这里最后执行到HystrixInvocationHandler中的invoke()方法中的回调函数run()中,最后执行SynchronousMethodHandler.invoke()方法。

    一个正常的feign请求,经过hystrix走一遍也就返回对应的response。

    总结

    上面一顿分析,不知道大家有没有对hystrix 线程池及command执行是否有些理解了?

    这个是一个正向流程,没有涉及超时、熔断、降级等代码。关于这些异常降级的源码会在后面一篇文章涉及。

    还是之前的建议,大家可以在每个相关的回调函数打上断点,然后一点点调试。

    最后再总结一下简单的流程:

    1. 浏览器发送请求,执行HystrixTargter
    2. 创建HystrixCommand,根据serviceName构造线程池
    3. AbstractCommand中一堆回调函数,最后将command交由线程池submit处理

    画一张流程图加深理解:
    Hystrix线程池创建过程及线程调用原理.jpg

    高清大图:https://www.processon.com/view/link/5e1c128ce4b0169fb51ce77e

    申明

    本文章首发自本人博客:https://www.cnblogs.com/wang-meng 和公众号:壹枝花算不算浪漫,如若转载请标明来源!

    感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫

    WechatIMG33.jpeg

  • 相关阅读:
    Flask-上传文件和访问上传的文件
    苹果审核加急信
    iTunes Connect 协议更新
    iOS 关于Xcode上的Other linker flags
    cocoaPods
    iOS 支付宝的集成与遇到的问题
    iOS中app在iTunes中更新版本流程
    iOS集成支付宝问题
    iOS 获取键盘下落速度
    iosMD5加密和base64加密
  • 原文地址:https://www.cnblogs.com/wang-meng/p/12199520.html
Copyright © 2011-2022 走看看