zoukankan      html  css  js  c++  java
  • Java中常见数据结构Map之LinkedHashMap

    前面已经说完了HashMap, 接着来说下LinkedHashMap。
    看到Linked就知道它是有序的Map,即插入顺序和取出顺序是一致的, 究竟是怎样做到的呢? 下面就一窥源码吧。

    1, LinkedHashMap基本结构
    LinkedHashMap是HashMap的一个子类,它保留插入的顺序,如果需要输出的顺序和输入时的相同,那么就选用LinkedHashMap。
    LinkedHashMap是Map接口的哈希表和链接列表实现,具有可预知的迭代顺序。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变
    LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。
    注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。

     

    根据链表中元素的顺序可以分为:按插入顺序的链表,和按访问顺序(调用get方法)的链表。 

    默认是按插入顺序排序,如果指定按访问顺序排序,那么调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。  可以重写removeEldestEntry方法返回true值指定插入元素时移除最老的元素。

    (以下源码截图皆为JDK7)
    Image(4)
     
    LinkedHashMap是继承HashMap, 也就是说LinkedHashMap的结构也是和HashMap那样(数组+链表)。
    LinkedHashMap最大的差别在于Entry的定义上:
    Image(5)
     
    这里维护了一个before和after的Entry, 见名思意, 就是每个Entry<K,V>都维护它的上一个元素和下一个元素的关系。这也是LinkedHashMap有序的关键所在。
    接着我们再看下header的定义:
    Image(6)
     
    上图可以看出header的hash值为-1, 所以并不在hash表的table上。 其实header就是为了记录双向链表的头结点和尾节点。
    LinkedHashMap的元素关系如下:
     
    Image(7)
     
     
    2, LinkedHashMap中主要方法介绍

    LinkedHashMap中重写的方法不是很多, 请看下图:
    Image(8)
     
    以下部分截取自: http://www.cnblogs.com/xiaoxi/p/6170590.html   感谢原作者, 写的确实很好。    
    假如有这么一段代码:
    复制代码
    1 public static void main(String[] args)
    2 {
    3     LinkedHashMap<String, String> linkedHashMap =
    4             new LinkedHashMap<String, String>();
    5     linkedHashMap.put("111", "111");
    6     linkedHashMap.put("222", "222");
    7 }
    
    复制代码

    首先是第3行~第4行,new一个LinkedHashMap出来,看一下做了什么:

    通过源代码可以看出,在LinkedHashMap的构造方法中,实际调用了父类HashMap的相关构造方法来构造一个底层存放的table数组。

    1 public LinkedHashMap() {
    2     super();
    3     accessOrder = false;
    4 }
    
    1 public HashMap() {
    2     this.loadFactor = DEFAULT_LOAD_FACTOR;
    3     threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    4     table = new Entry[DEFAULT_INITIAL_CAPACITY];
    5     init();
    6 }
    

    我们已经知道LinkedHashMap的Entry元素继承HashMap的Entry,提供了双向链表的功能。在上述HashMap的构造器中,最后会调用init()方法,进行相关的初始化,这个方法在HashMap的实现中并无意义,只是提供给子类实现相关的初始化调用。
    LinkedHashMap重写了init()方法,在调用父类的构造方法完成构造后,进一步实现了对其元素Entry的初始化操作。

    1 void init() {
    2      header = new Entry<K,V>(-1, null, null, null);
    3      header.before = header.after = header;
    4 }
    

    这里出现了第一个多态:init()方法。尽管init()方法定义在HashMap中,但是由于:

    1、LinkedHashMap重写了init方法

    2、实例化出来的是LinkedHashMap

    因此实际调用的init方法是LinkedHashMap重写的init方法。假设header的地址是0x00000000,那么初始化完毕,实际上是这样的:

    注意这个header,hash值为-1,其他都为null,也就是说这个header不放在数组中,就是用来指示开始元素和标志结束元素的。

    header的目的是为了记录第一个插入的元素是谁,在遍历的时候能够找到第一个元素。

    五、LinkedHashMap存储元素

    LinkedHashMap并未重写父类HashMap的put方法,而是重写了父类HashMap的put方法调用的子方法void recordAccess(HashMap m)  ,void addEntry(int hash, K key, V value, int bucketIndex) 和void createEntry(int hash, K key, V value, int bucketIndex),提供了自己特有的双向链接列表的实现。

    继续看LinkedHashMap存储元素,也就是put("111","111")做了什么,首先当然是调用HashMap的put方法:

    复制代码
     1 //这个方法应该挺熟悉的,如果看了HashMap的解析的话 2 public V put(K key, V value) {
     3     //key为null的情况 4     if (key == null)
     5         return putForNullKey(value);
     6     //通过key算hash,进而算出在数组中的位置,也就是在第几个桶中 7     int hash = hash(key.hashCode());
     8     int i = indexFor(hash, table.length);
     9     //查看桶中是否有相同的key值,如果有就直接用新值替换旧值,而不用再创建新的entry了10     for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    11         Object k;
    12         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
    13             V oldValue = e.value;
    14             e.value = value;
    15             e.recordAccess(this);
    16             return oldValue;
    17         }
    18     }
    19 
    20     modCount++;    
    21     //上面度是熟悉的东西,最重要的地方来了,就是这个方法,LinkedHashMap执行到这里,addEntry()方法不会执行HashMap中的方法,
    22     //而是执行自己类中的addEntry方法,23     addEntry(hash, key, value, i);
    24     return null;
    25 }
    
    复制代码

    第23行又是一个多态,因为LinkedHashMap重写了addEntry方法,因此addEntry调用的是LinkedHashMap重写了的方法:

    复制代码
     1 void addEntry(int hash, K key, V value, int bucketIndex) {
     2     //调用create方法,将新元素以双向链表的的形式加入到映射中 3     createEntry(hash, key, value, bucketIndex);
     4 
     5     // Remove eldest entry if instructed, else grow capacity if appropriate
     6     // 删除最近最少使用元素的策略定义   7     Entry<K,V> eldest = header.after;
     8     if (removeEldestEntry(eldest)) {
     9         removeEntryForKey(eldest.key);
    10     } else {
    11         if (size >= threshold)
    12             resize(2 * table.length);
    13     }
    14 }
    
    复制代码

    因为LinkedHashMap由于其本身维护了插入的先后顺序,因此LinkedHashMap可以用来做缓存,第7行~第9行是用来支持FIFO算法的,这里暂时不用去关心它。看一下createEntry方法: 

    复制代码
    1 void createEntry(int hash, K key, V value, int bucketIndex) {
    2     HashMap.Entry<K,V> old = table[bucketIndex];
    3     Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
    4     table[bucketIndex] = e;
    5     //将该节点插入到链表尾部6     e.addBefore(header);
    7     size++;
    8 }
    
    复制代码
    private void addBefore(Entry<K,V> existingEntry) {
        after  = existingEntry;
        before = existingEntry.before;
        before.after = this;
        after.before = this;
    }

    createEntry(int hash,K key,V value,int bucketIndex)方法覆盖了父类HashMap中的方法。这个方法不会拓展table数组的大小。该方法首先保留table中bucketIndex处的节点,然后调用Entry的构造方法(将调用到父类HashMap.Entry的构造方法)添加一个节点,即将当前节点的next引用指向table[bucketIndex] 的节点,之后调用的e.addBefore(header)是修改链表,将e节点添加到header节点之前。

    第2行~第4行的代码和HashMap没有什么不同,新添加的元素放在table[i]上,差别在于LinkedHashMap还做了addBefore操作,这四行代码的意思就是让新的Entry和原链表生成一个双向链表。假设字符串111放在位置table[1]上,生成的Entry地址为0x00000001,那么用图表示是这样的:

    如果熟悉LinkedList的源码应该不难理解,还是解释一下,注意下existingEntry表示的是header:

    1、after=existingEntry,即新增的Entry的after=header地址,即after=0x00000000

    2、before=existingEntry.before,即新增的Entry的before是header的before的地址,header的before此时是0x00000000,因此新增的Entry的before=0x00000000

    3、before.after=this,新增的Entry的before此时为0x00000000即header,header的after=this,即header的after=0x00000001

    4、after.before=this,新增的Entry的after此时为0x00000000即header,header的before=this,即header的before=0x00000001

    这样,header与新增的Entry的一个双向链表就形成了。再看,新增了字符串222之后是什么样的,假设新增的Entry的地址为0x00000002,生成到table[2]上,用图表示是这样的:

     

    就不细解释了,只要before、after清除地知道代表的是哪个Entry的就不会有什么问题。

    注意,这里的插入有两重含义:

    1.从table的角度看,新的entry需要插入到对应的bucket里,当有哈希冲突时,采用头插法将新的entry插入到冲突链表的头部。
    2.从header的角度看,新的entry需要插入到双向链表的尾部。

    总得来看,再说明一遍,LinkedHashMap的实现就是HashMap+LinkedList的实现方式,以HashMap维护数据结构,以LinkList的方式维护数据插入顺序。

    3、LinkedHashMap读取元素

    LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时(即按访问顺序排序),先将当前节点从链表中移除,然后再将当前节点插入到链表尾部。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。

    复制代码
    /**
     * 通过key获取value,与HashMap的区别是:当LinkedHashMap按访问顺序排序的时候,会将访问的当前节点移到链表尾部(头结点的前一个节点)
     */public V get(Object key) {
        // 调用父类HashMap的getEntry()方法,取得要查找的元素。  
        Entry<K,V> e = (Entry<K,V>)getEntry(key);
        if (e == null)
            return null;
        // 记录访问顺序。
        e.recordAccess(this);
        return e.value;
    }
    复制代码
    复制代码
    /**
     * 在HashMap的put和get方法中,会调用该方法,在HashMap中该方法为空
     * 在LinkedHashMap中,当按访问顺序排序时,该方法会将当前节点插入到链表尾部(头结点的前一个节点),否则不做任何事
     */void recordAccess(HashMap<K,V> m) {
        LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
        //当LinkedHashMap按访问排序时
        if (lm.accessOrder) {
            lm.modCount++;
            //移除当前节点        remove();
            //将当前节点插入到头结点前面        addBefore(lm.header);
        }
    }
    复制代码
    复制代码
    /**
     * 移除节点,并修改前后引用
     */private void remove() {
        before.after = after;
        after.before = before;
    }
    复制代码
    private void addBefore(Entry<K,V> existingEntry) {
        after  = existingEntry;
        before = existingEntry.before;
        before.after = this;
        after.before = this;
    }

    4、利用LinkedHashMap实现LRU算法缓存

    前面讲了LinkedHashMap添加元素,删除、修改元素就不说了,比较简单,和HashMap+LinkedList的删除、修改元素大同小异,下面讲一个新的内容。

    LinkedHashMap可以用来作缓存,比方说LRUCache,看一下这个类的代码,很简单,就十几行而已:

    复制代码
    public class LRUCache extends LinkedHashMap
    {
        public LRUCache(int maxSize)
        {
            super(maxSize, 0.75F, true);
            maxElements = maxSize;
        }
    
        protected boolean removeEldestEntry(java.util.Map.Entry eldest)
        {
            return size() > maxElements;
        }
    
        private static final long serialVersionUID = 1L;
        protected int maxElements;
    }
    复制代码

    顾名思义,LRUCache就是基于LRU算法的Cache(缓存),这个类继承自LinkedHashMap,而类中看到没有什么特别的方法,这说明LRUCache实现缓存LRU功能都是源自LinkedHashMap的。LinkedHashMap可以实现LRU算法的缓存基于两点:

    1、LinkedList首先它是一个Map,Map是基于K-V的,和缓存一致

    2、LinkedList提供了一个boolean值可以让用户指定是否实现LRU

    那么,首先我们了解一下什么是LRU:LRU即Least Recently Used,最近最少使用,也就是说,当缓存满了,会优先淘汰那些最近最不常访问的数据。比方说数据a,1天前访问了;数据b,2天前访问了,缓存满了,优先会淘汰数据b。

    我们看一下LinkedList带boolean型参数的构造方法:

    public LinkedHashMap(int initialCapacity,
             float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }

    就是这个accessOrder,它表示:

    (1)false,所有的Entry按照插入的顺序排列

    (2)true,所有的Entry按照访问的顺序排列

    第二点的意思就是,如果有1 2 3这3个Entry,那么访问了1,就把1移到尾部去,即2 3 1。每次访问都把访问的那个数据移到双向队列的尾部去,那么每次要淘汰数据的时候,双向队列最头的那个数据不就是最不常访问的那个数据了吗?换句话说,双向链表最头的那个数据就是要淘汰的数据。

    "访问",这个词有两层意思:

    1、根据Key拿到Value,也就是get方法

    2、修改Key对应的Value,也就是put方法

    首先看一下get方法,它在LinkedHashMap中被重写:

    复制代码
    public V get(Object key) {
        Entry<K,V> e = (Entry<K,V>)getEntry(key);
        if (e == null)
            return null;
        e.recordAccess(this);
        return e.value;
    }
    复制代码

    然后是put方法,沿用父类HashMap的:

    复制代码
     1 public V put(K key, V value) {
     2     if (key == null)
     3         return putForNullKey(value);
     4     int hash = hash(key.hashCode());
     5     int i = indexFor(hash, table.length);
     6     for (Entry<K,V> e = table[i]; e != null; e = e.next) {
     7         Object k;
     8         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
     9             V oldValue = e.value;
    10             e.value = value;
    11             e.recordAccess(this);
    12             return oldValue;
    13         }
    14     }
    15 
    16     modCount++;
    17     addEntry(hash, key, value, i);
    18     return null;
    19 }
    
    复制代码

    修改数据也就是第6行~第14行的代码。看到两端代码都有一个共同点:都调用了recordAccess方法且这个方法是Entry中的方法,也就是说每次的recordAccess操作的都是某一个固定的Entry。

    recordAccess,顾名思义,记录访问,也就是说你这次访问了双向链表,我就把你记录下来,怎么记录?把你访问的Entry移到尾部去这个方法在HashMap中是一个空方法,就是用来给子类记录访问用的,看一下LinkedHashMap中的实现:

    复制代码
    void recordAccess(HashMap<K,V> m) {
        LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
        if (lm.accessOrder) {
            lm.modCount++;
            remove();
            addBefore(lm.header);
        }
    }
    复制代码
    private void remove() {
        before.after = after;
        after.before = before;
    }
    private void addBefore(Entry<K,V> existingEntry) {
        after  = existingEntry;
        before = existingEntry.before;
        before.after = this;
        after.before = this;
    }

    看到每次recordAccess的时候做了两件事情:

    1、把待移动的Entry的前后Entry相连

    2、把待移动的Entry移动到尾部

    当然,这一切都是基于accessOrder=true的情况下。最后用一张图表示一下整个recordAccess的过程吧:

    void recordAccess(HashMap<K,V> m) 这个方法就是我们一开始说的,accessOrder为true时,就是使用的访问顺序,访问次数最少到访问次数最多,此时要做特殊处理。处理机制就是访问了一次,就将自己往后移一位,这里就是先将自己删除了,然后在把自己添加,这样,近期访问的少的就在链表的开始,最近访问的元素就会在链表的末尾。如果为false。那么默认就是插入顺序,直接通过链表的特点就能依次找到插入元素,不用做特殊处理。

    5、代码演示LinkedHashMap按照访问顺序排序的效果

    最后代码演示一下LinkedList按照访问顺序排序的效果,验证一下上一部分LinkedHashMap的LRU功能:

    复制代码
    public static void main(String[] args)
    {
        LinkedHashMap<String, String> linkedHashMap =
                new LinkedHashMap<String, String>(16, 0.75f, true);
        linkedHashMap.put("111", "111");
        linkedHashMap.put("222", "222");
        linkedHashMap.put("333", "333");
        linkedHashMap.put("444", "444");
        loopLinkedHashMap(linkedHashMap);
        linkedHashMap.get("111");
        loopLinkedHashMap(linkedHashMap);
        linkedHashMap.put("222", "2222");
        loopLinkedHashMap(linkedHashMap);
    }
        
    public static void loopLinkedHashMap(LinkedHashMap<String, String> linkedHashMap)
    {
        Set<Map.Entry<String, String>> set = inkedHashMap.entrySet();
        Iterator<Map.Entry<String, String>> iterator = set.iterator();
        
        while (iterator.hasNext())
        {
            System.out.print(iterator.next() + "	");
        }
        System.out.println();
    }
    复制代码

    注意这里的构造方法要用三个参数那个且最后的要传入true,这样才表示按照访问顺序排序。看一下代码运行结果:

    111=111    222=222    333=333    444=444    
    222=222    333=333    444=444    111=111    
    333=333    444=444    111=111    222=2222   
    

    代码运行结果证明了两点:

    1、LinkedList是有序的

    2、每次访问一个元素(get或put),被访问的元素都被提到最后面去了
  • 相关阅读:
    SQLite 版本引发的 Python 程序调用问题
    从0到10亿,微信后台架构及基础设施设计与实践!
    从Oracle到PostgreSQL:动态性能视图 vs 标准统计视图
    第一章 准备工作
    Swagger2简介
    如何查询numpy,scipy,matplotlib等的版本和安装位置
    完美解决ImportError: cannot import name '_validate_lengths'报错问题
    完美解决AttributeError: module 'scipy.misc' has no attribute 'imread'报错问题
    线上课堂:ernetes Operator开发范式
    Bomb Enemy 炸弹人
  • 原文地址:https://www.cnblogs.com/wang-meng/p/7583491.html
Copyright © 2011-2022 走看看