A. Digits Sequence Dividing
题解:因为每个数字都是[1,9]那么直接分成两部分即可 特判n=2的情况
#include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <vector> #include <stack> #include <queue> #include <cmath> #include <set> #include <map> #define mp make_pair #define pb push_back #define pii pair<int,int> #define link(x) for(edge *j=h[x];j;j=j->next) #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,r,l) for(int i=r;i>=l;i--) const int MAXN=3e5+10; const double eps=1e-8; #define ll long long using namespace std; struct edge{int t,v;edge*next;}e[MAXN<<1],*h[MAXN],*o=e; void add(int x,int y,int vul){o->t=y;o->v=vul;o->next=h[x];h[x]=o++;} ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return x*f; } char str[MAXN]; int main(){ int _=read(); while(_--){ int n;n=read(); inc(i,1,n)scanf("%c",&str[i]); if(n==2&&str[1]>=str[2])printf("NO "); else{ puts("YES"); printf("%d ",2); printf("%d ",str[1]-'0'); inc(i,2,n)printf("%d",str[i]-'0'); printf(" "); } } }
B. Digital root
题解:打表即可
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<stack> #include<cmath> #include<set> #include<bitset> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-8 #define succ(x) (1<<x) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define mid (x+y>>1) #define NM 100005 #define nm 1000005 #define pi 3.1415926535897931 const ll inf=998244353; using namespace std; ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return f*x; } ll n,k; int main(){ int _=read();while(_--){ n=read();k=read(); printf("%lld ",9*(n-1)+k); } return 0; }
C. Brutality
题解: 分段考虑 排序取前k个
#include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <vector> #include <stack> #include <queue> #include <cmath> #include <set> #include <map> #define mp make_pair #define pb push_back #define pii pair<int,int> #define link(x) for(edge *j=h[x];j;j=j->next) #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,r,l) for(int i=r;i>=l;i--) const int MAXN=3e5+10; const double eps=1e-8; #define ll long long using namespace std; struct edge{int t,v;edge*next;}e[MAXN<<1],*h[MAXN],*o=e; void add(int x,int y,int vul){o->t=y;o->v=vul;o->next=h[x];h[x]=o++;} ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return x*f; } vector<int>vec; char str[MAXN];int a[MAXN]; bool cmp(int t1,int t2){return t1>t2;} int main(){ int n=read();int k=read(); inc(i,1,n)a[i]=read(); scanf("%s",str+1); vec.pb(a[1]); ll ans=0; inc(i,2,n){ if(str[i]==str[i-1])vec.pb(a[i]); else{ sort(vec.begin(),vec.end(),cmp); int t1=vec.size();int t2=min(k,t1); for(int j=0;j<t2;j++)ans+=vec[j]; vec.clear(); vec.pb(a[i]); } } sort(vec.begin(),vec.end(),cmp); int t1=vec.size();int t2=min(k,t1); for(int j=0;j<t2;j++)ans+=vec[j]; vec.clear(); printf("%lld ",ans); }
D. Compression
题解: bitset暴力莽 是有不需要bitset的做法的
题解:https://www.cnblogs.com/greenty1208/p/10332400.html
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<stack> #include<cmath> #include<set> #include<bitset> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-8 #define succ(x) (1<<x) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define mid (x+y>>1) #define NM 5205 #define nm 1000005 #define pi 3.1415926535897931 const ll inf=998244353; using namespace std; ll read(){ char ch=getchar(); while(!isdigit(ch)&&!('A'<=ch&&ch<='Z'))ch=getchar(); if(isdigit(ch))return ch-'0'; else return ch-'A'+10; } bitset<5201>a[NM],tmp; int n,ans,cnt; bool check(int t){ int m=n/t-1; inc(i,0,m) inc(j,0,m){ int _t=a[i*t+1][j*t+1]; inc(k,2,t)if(a[i*t+1][j*t+k]!=_t)return false; } inc(i,0,m){ inc(j,2,t){ tmp=a[i*t+1]^a[i*t+j]; if(tmp.count())return false; } } return true; } int main(){ scanf("%d",&n);ans=1;cnt=n; inc(i,1,n){ inc(j,1,n/4){ int t=read(); inc(k,0,3)if(t&succ(k))a[i].set(4*j-k); } } //inc(i,1,n){inc(j,1,n)printf("%d",(int)a[i][j]);putchar(' ');} for(int i=2;i*i<=cnt;i++)if(cnt%i==0){ int j=i; for(;cnt%i==0;j*=i){ cnt/=i; if(!check(j)){ans*=j/i;break;} if(cnt%i){ans*=j;break;} } while(cnt%i==0)cnt/=i; } if(cnt>1)if(check(cnt))ans*=cnt; printf("%d ",ans); }
E. Vasya and Binary String
题解:https://blog.csdn.net/qkoqhh/article/details/86681107
题解:https://www.cnblogs.com/greenty1208/p/10331195.html
F. 待补
G. G. Vasya and Maximum Profit
题解:长得像dp的数据结构题
首先 确定这个表达式 S=a*(r-l+1)-(cl+.....+cr)-max(.....题目的那个式子) (没有md打不出公式)
然后我们对这个式子做个变形 并令k=max(.....)
S=a*r-C[r]-[a*(l-1)-C[l-1]]-k C表示对于c数组求前缀和
令b数组等于 b[i]=a*i-C[i]
让S最大那么b[r]-b[l-1]差值最大
对于常数k我们怎么处理呢 有两种办法 对k最大值分治 然后求跨过这个位置两边的最大最小值 这个可以通过st表/线段树获得
另外一种做法 就是对于每个位置的k的我们单调栈找出他能表示的范围(即最大值就是当前位置的区间) 然后对于每个区间st处理维护 b[r]-b[l-1]的最大值
场上qko大爷的做法 是第一种分治做的 他说他不会写数据结构(滑稽)
吐槽 这个人的st表写的真丑
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<stack> #include<cmath> #include<set> #include<bitset> #define inc(i,l,r) for(int i=l;i<=r;i++) #define dec(i,l,r) for(int i=l;i>=r;i--) #define link(x) for(edge *j=h[x];j;j=j->next) #define mem(a) memset(a,0,sizeof(a)) #define ll long long #define eps 1e-8 #define succ(x) (1<<x) #define lowbit(x) (x&(-x)) #define sqr(x) ((x)*(x)) #define mid (x+y>>1) #define NM 300005 #define nm 1000005 #define pi 3.1415926535897931 const ll inf=998244353; using namespace std; ll read(){ ll x=0,f=1;char ch=getchar(); while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} while(isdigit(ch))x=x*10+ch-'0',ch=getchar(); return f*x; } int n; ll a,ans,d[NM],c[NM],pre[NM],suc[NM],mn[NM],smax[NM][20],smin[NM][20]; struct P{ int i;ll t; bool operator<(const P&o)const{return t<o.t;} }st[NM][20]; P query(int l,int r){ int k=mn[r-l]; return max(st[l][k],st[r-succ(k)+1][k]); } ll rmq(int l,int r){ int k=mn[r-l]; return max(smax[l][k],smax[r-succ(k)+1][k]); } ll _rmq(int l,int r){ int k=mn[r-l]; return min(smin[l][k],smin[r-succ(k)+1][k]); } void dfs(int x,int y){ if(x==y){ ans=max(ans,a-c[x]+c[x-1]); return; } P t=query(x,y-1); ans=max(ans,rmq(t.i+1,y)-_rmq(x-1,t.i)-sqr(t.t)); dfs(x,t.i);dfs(t.i+1,y); } int main(){ //freopen("data.in","r",stdin); n=read();a=read(); inc(i,1,n)d[i]=read(),c[i]=read(); inc(i,1,n)c[i]+=c[i-1]; inc(i,1,n-1)st[i][0]=P{i,d[i+1]-d[i]}; inc(i,1,n)smax[i][0]=smin[i][0]=a*i-c[i]; inc(i,2,n)mn[i]=mn[i/2]+1; for(int j=1;succ(j)<n;j++) for(int i=0;i+succ(j)-1<n;i++) st[i][j]=max(st[i][j-1],st[i+succ(j-1)][j-1]); for(int j=1;succ(j)<=n;j++) for(int i=0;i+succ(j)-1<=n;i++) smax[i][j]=max(smax[i][j-1],smax[i+succ(j-1)][j-1]), smin[i][j]=min(smin[i][j-1],smin[i+succ(j-1)][j-1]); dfs(1,n); return 0*printf("%lld ",ans); }