过滤 filter; //匹配第一个元素 Optional<Integer> findFirst=list.stream().filter(x->x>6).findFirst(); //任意匹配 (适用于并行流) List<String> collect = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList()); //任意匹配 (适用于并行流) Optional<Integer> findAny=list.parallelStream().filter(x->x>6).findAny(); 是否匹配: anyMatch: // 是否包含符合特定条件的元素 boolean anyMatch=list.stream().anyMatch(x->x>6); 映射 map: // 案例二:将员工的薪资全部增加1000。 List<Person> personListNew = personList.stream().map(person -> { // 不改变原来员工集合的方式 Person person1 = new Person(person.getName(), 0, null, 0, null); person1.setSalary(person.getSalary() + 1000); return person1; }).collect(Collectors.toList()); List<Person> collect3 = personList.stream().map(person -> { // 改变原来员工集合的方式 person.setSalary(person.getSalary() + 1000); return person; }).collect(Collectors.toList()); //变成大写 String[] strArr = { "abcd", "bcdd", "defde", "fTr" }; List<String> collect1 = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); // map分为两组 // flatMap分为两一组 //.map获取两个班级所有的男生的集合 List<List<Person>> boyLists = gradeManageList.stream() //返回一个list 的List<Person> .map(classManageMap -> classManageMap.get("男生")) .collect(Collectors.toList()); //.flatMap获取两个班级所有男生的集合,返回一个List<Person> List<Person> boyList = gradeManageList.stream() //返回Person 的list .flatMap(classManageMap -> classManageMap.get("男生").stream()) .collect(Collectors.toList()); // 案例三:将两个字符数组合并成一个新的字符数组。 List<String> list7 = Arrays.asList("m,k,l,a", "1,3,5,7"); List<String> collect4 = list7.stream().flatMap(s -> { //把每个元素转化成一个stream String[] split = s.split(","); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); 最大 max: Optional<Person> max2 = personList.stream().max(Comparator.comparing(Person::getSalary)); // System.out.println(max2.get()); // 3.3 聚合(max/min/count) List<String> strings = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional<String> max = strings.stream().max(Comparator.comparing(String::length)); // System.out.println("最长的字符串:" + max.get()); Optional<Person> max1 = personList.stream().max(Comparator.comparing(Person::getAge)); // System.out.println("最大年龄"+max1.get()); //自然排序 Optional<Integer> max3=list3.stream().max(Integer::compareTo); //自定义排序 Optional<Integer> max4 = list3.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); 归纳 reduce: // 求工资之和方式1: Optional<Integer> reduce1 = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer reduce = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer reduce3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer reduce2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max3) -> max1 > max3 ? max1 : max3); List<Integer> list8 = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和 Optional<Integer> sum1=list8.stream().reduce((x,y)-> x + y); Optional<Integer> sum2=list8.stream().reduce(Integer::sum); Integer sum3= list8.stream().reduce(0, Integer::sum); // 求乘积 Optional<Integer> sum4=list8.stream().reduce((x,y)-> x * y); // 求最大值方式 Optional<Integer> max6=list8.stream().reduce((x,y)-> x > y?x:y); Integer max5=list8.stream().reduce(1,Integer::max); Map<String, Person> collect7 = personList0.stream().filter(p -> p.getSalary() > 8000).collect(Collectors.toMap(Person::getName, p -> p)); //统计员工人数 Long collect6 = personList0.stream().collect(Collectors.counting()); //平均工资 Double collect8 = personList0.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional<Integer> collect9 = personList0.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Double collect10 = personList0.stream().collect(Collectors.summingDouble(Person::getSalary)); //以上总计数量,最大,最小,平均 DoubleSummaryStatistics collect0 = personList0.stream().collect(Collectors.summarizingDouble(Person::getSalary)); 接合(joining): String collect14 = personList0.stream().map(p -> p.getName()).collect(Collectors.joining(",")); // System.out.println("所有员工的姓名:" + collect14); sorted: // sorted,中间操作。有两种排序: // sorted():自然排序,流中元素需实现Comparable接口 // sorted(Comparator com):Comparator排序器自定义排序 // 按工资升序排序(自然排序) //按照工资升序的人的姓名排序 List<String> collect16 = personList0.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List<String> collect17 = personList0.stream().sorted( Comparator.comparing(Person::getSalary).thenComparing(Person::getAge) ).map(Person::getName).collect(Collectors.toList()); concat distinct: String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g","a"}; Stream<String> arr11 = Stream.of(arr1); Stream<String> arr22= Stream.of(arr2); // concat:合并两个流 distinct:去重 List<String> distinct = Stream.concat(arr11, arr22).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List<Integer> collect19 = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List<Integer> collect20 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());