zoukankan      html  css  js  c++  java
  • 盒图(boxplot)

    最近在摆弄数据离散度的时候遇到一种图形,叫做盒图(boxplot)。它对于显示数据的离散的分布情况效果不错。

    盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的。它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。也可以往盒图里面加入平均值(mean)。如上图。下四分位数、中位数、上四分位数组成一个“带有隔间的盒子”。上四分位数到最大值之间建立一条延伸线,这个延伸线成为“胡须(whisker)”。
    由于现实数据中总是存在各式各样地“脏数据”,也成为“离群点”,于是为了不因这些少数的离群数据导致整体特征的偏移,将这些离群点单独汇出,而盒图中的胡须的两级修改成最小观测值与最大观测值。这里有个经验,就是最大(最小)观测值设置为与四分位数值间距离为1.5个IQR(中间四分位数极差)。即
     

    • IQR = Q3-Q1,即上四分位数与下四分位数之间的差,也就是盒子的长度。
    • 最小观测值为min = Q1 - 1.5*IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。
    • 最大观测值为max = Q3 +1.5*IQR,如果存在离群点大于最大观测值,则胡须上限为最大观测值,离群点单独以点汇出。如果没有比最大观测值大的数,则胡须上限为最大值。
    通过盒图,在分析数据的时候,盒图能够有效地帮助我们识别数据的特征:
    1. 直观地识别数据集中的异常值(查看离群点)。
    2. 判断数据集的数据离散程度和偏向(观察盒子的长度,上下隔间的形状,以及胡须的长度)。

  • 相关阅读:
    axios跨域问题(包括开发环境和生产环境)
    vue高亮一级、二级导航
    vue配置路由时报错 Error in render: "RangeError: Maximum call stack size exceeded"
    win10使用L2TP连接失败,报远程服务器未响应错误解决办法,亲测可用!
    pywinauto教程
    Python结合Pywinauto 进行 Windows UI 自动化
    Pywinauto自动化操作PC微信提取好友微信号
    Debian9 配置kali(xfce4、Metasploit、wireshark)
    Kali开启ssh
    从域环境搭建到域渗透
  • 原文地址:https://www.cnblogs.com/wangchunming/p/2390728.html
Copyright © 2011-2022 走看看