zoukankan      html  css  js  c++  java
  • 11.Mapreduce实例——MapReduce自定义输出格式小

    Mapreduce实例——MapReduce自定义输出格式

    实验步骤

    1.开启Hadoop

     

    2.新建mapreduce12目录

    在Linux本地新建/data/mapreduce12目录

     

    3. 上传文件到linux中

    (自行生成文本文件,放到个人指定文件夹下)

    cat_group1文件

    512 奢侈品 c 1

    675 箱包 1 1

    676 化妆品 2 1

    677 家电 3 1

    501 有机食品 1 0

    502 蔬菜水果 2 0

    503 肉禽蛋奶 3 0

    504 深海水产 4 0

    505 地方特产 5 0

    506 进口食品 6 0

    4.在HDFS中新建目录

    首先在HDFS上新建/mymapreduce12/in目录,然后将Linux本地/data/mapreduce12目录下的cat_group1文件导入到HDFS的/mymapreduce12/in目录中。

    hadoop fs -mkdir -p /mymapreduce12/in

    hadoop fs -put /root/data/mapreduce12/cat_group1 /mymapreduce12/in

    5.新建Java Project项目

    新建Java Project项目,项目名为mapreduce。

    在mapreduce项目下新建包,包名为mapreduce11。

    在mapreduce11包下新建类,类名为MyMultipleOutputFormat、FileOutputMR

    6.添加项目所需依赖的jar包

    右键项目,新建一个文件夹,命名为:hadoop2lib,用于存放项目所需的jar包。

    将/data/mapreduce2目录下,hadoop2lib目录中的jar包,拷贝到eclipse中mapreduce2项目的hadoop2lib目录下。

    hadoop2lib为自己从网上下载的,并不是通过实验教程里的命令下载的

    选中所有项目hadoop2lib目录下所有jar包,并添加到Build Path中。

     

    7.编写程序代码

    (1)MyMultipleOutputFormat.java

    package mapreduce11;
    import java.io.DataOutputStream;
    import java.io.IOException;
    import java.io.PrintWriter;
    import java.io.UnsupportedEncodingException;
    import java.util.HashMap;
    import java.util.Iterator;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.Writable;
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.io.compress.CompressionCodec;
    import org.apache.hadoop.io.compress.GzipCodec;
    import org.apache.hadoop.mapreduce.OutputCommitter;
    import org.apache.hadoop.mapreduce.RecordWriter;
    import org.apache.hadoop.mapreduce.TaskAttemptContext;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.ReflectionUtils;
    public abstract class MyMultipleOutputFormat <K extends WritableComparable<?>,V extends Writable> extends FileOutputFormat<K,V>{
        private MultiRecordWriter writer=null;
        public RecordWriter<K,V> getRecordWriter(TaskAttemptContext job) throws IOException{
            if(writer==null){
                writer=new MultiRecordWriter(job,getTaskOutputPath(job));
            }
            return writer;
        }
        private Path getTaskOutputPath(TaskAttemptContext conf) throws IOException{
            Path workPath=null;
            OutputCommitter committer=super.getOutputCommitter(conf);
            if(committer instanceof FileOutputCommitter){
                workPath=((FileOutputCommitter) committer).getWorkPath();
            }else{
                Path outputPath=super.getOutputPath(conf);
                if(outputPath==null){
                    throw new IOException("Undefined job output-path");
                }
                workPath=outputPath;
            }
            return workPath;
        }
        protected abstract String generateFileNameForKayValue(K key,V value,Configuration conf);
        protected static class LineRecordWriter<K,V> extends RecordWriter<K, V> {
            private static final String utf8 = "UTF-8";
            private static final byte[] newline;
            private PrintWriter tt;
            static {
                try {
                    newline = "\n".getBytes(utf8);
                } catch (UnsupportedEncodingException uee) {
                    throw new IllegalArgumentException("can't find " + utf8 + " encoding");
                }
            }
    
            protected DataOutputStream out;
            private final byte[] keyValueSeparator;
    
            public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
                this.out = out;
                try {
                    this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
                } catch (UnsupportedEncodingException uee) {
                    throw new IllegalArgumentException("can't find " + utf8 + " encoding");
                }
            }
    
            public LineRecordWriter(DataOutputStream out) {
                this(out, ":");
            }
            private void writeObject(Object o) throws IOException {
                if (o instanceof Text) {
                    Text to = (Text) o;
                    out.write(to.getBytes(), 0, to.getLength());
                } else {
                    out.write(o.toString().getBytes(utf8));
                }
            }
    
            public synchronized void write(K key, V value)
                    throws IOException {
                boolean nullKey = key == null || key instanceof NullWritable;
                boolean nullValue = value == null || value instanceof NullWritable;
                if (nullKey && nullValue) {//
                    return;
                }
                if (!nullKey) {
                    writeObject(key);
                }
                if (!(nullKey || nullValue)) {
                    out.write(keyValueSeparator);
                }
                if (!nullValue) {
                    writeObject(value);
                }
                out.write(newline);
    
            }
    
            public synchronized
            void close(TaskAttemptContext context) throws IOException {
                out.close();
            }
        }
        public class MultiRecordWriter extends RecordWriter<K,V>{
            private HashMap<String,RecordWriter<K,V> >recordWriters=null;
            private TaskAttemptContext job=null;
            private Path workPath=null;
            public MultiRecordWriter(TaskAttemptContext job,Path workPath){
                super();
                this.job=job;
                this.workPath=workPath;
                recordWriters=new HashMap<String,RecordWriter<K,V>>();
    
            }
            public void close(TaskAttemptContext context) throws IOException, InterruptedException{
                Iterator<RecordWriter<K,V>> values=this.recordWriters.values().iterator();
                while(values.hasNext()){
                    values.next().close(context);
                }
                this.recordWriters.clear();
            }
            public void write(K key,V value) throws IOException, InterruptedException{
                String baseName=generateFileNameForKayValue(key ,value,job.getConfiguration());
                RecordWriter<K,V> rw=this.recordWriters.get(baseName);
                if(rw==null){
                    rw=getBaseRecordWriter(job,baseName);
                    this.recordWriters.put(baseName,rw);
                }
                rw.write(key, value);
            }
    
    
            private RecordWriter<K,V> getBaseRecordWriter(TaskAttemptContext job,String baseName)throws IOException,InterruptedException{
                Configuration conf=job.getConfiguration();
                boolean isCompressed=getCompressOutput(job);
                String keyValueSeparator= ":";
                RecordWriter<K,V> recordWriter=null;
                if(isCompressed){
                    Class<?extends CompressionCodec> codecClass=getOutputCompressorClass(job,(Class<?extends CompressionCodec>) GzipCodec.class);
                    CompressionCodec codec=ReflectionUtils.newInstance(codecClass,conf);
                    Path file=new Path(workPath,baseName+codec.getDefaultExtension());
                    FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                    recordWriter=new LineRecordWriter<K,V>(new DataOutputStream(codec.createOutputStream(fileOut)),keyValueSeparator);
                }else{
                    Path file=new Path(workPath,baseName);
                    FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                    recordWriter =new LineRecordWriter<K,V>(fileOut,keyValueSeparator);
                }
                return recordWriter;
            }
        }
    }

    (2)FileOutputMR.java

    package mapreduce11;
    import java.io.IOException;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    public class FileOutputMR {
        public static class TokenizerMapper extends Mapper<Object,Text,Text,Text>{
            private Text val=new Text();
            public void map(Object key,Text value,Context context)throws IOException,InterruptedException{
                String str[]=value.toString().split("\t");
                val.set(str[0]+" "+str[1]+" "+str[2]);
                context.write(new Text(str[3]), val);
            }
        }
        public static class IntSumReducer extends Reducer<Text,Text,Text,Text>{
            public void reduce(Text key,Iterable<Text> values,Context context)
                    throws IOException,InterruptedException{
                for(Text val:values){
                    context.write(key,val);
                }
            }
        }
        public static class AlphabetOutputFormat extends MyMultipleOutputFormat<Text,Text>{
            protected String generateFileNameForKayValue(Text key,Text value,Configuration conf){
                return key+".txt";
            }
        }
        public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException{
            Configuration conf=new Configuration();
            Job job=new Job(conf,"FileOutputMR");
            job.setJarByClass(FileOutputMR.class);
            job.setMapperClass(TokenizerMapper.class);
            job.setCombinerClass(IntSumReducer.class);
            job.setReducerClass(IntSumReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            job.setOutputFormatClass(AlphabetOutputFormat.class);
            FileInputFormat.addInputPath(job,new Path("hdfs://192.168.109.10:9000/mymapreduce12/in/cat_group1"));
            FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.109.10:9000/mymapreduce12/out"));
            System.exit(job.waitForCompletion(true)?0:1);
        }
    }

    8.运行代码

    在FileOutputMR类文件中,右键并点击=>Run As=>Run on Hadoop选项,将MapReduce任务提交到Hadoop中。

     

    9.查看实验结果

    待执行完毕后,进入命令模式下,在HDFS中/mymapreduce12/out查看实验结果。

    hadoop fs -ls /mymapreduce12/out  

    hadoop fs -cat /mymapreduce12/out/0.txt

    hadoop fs -cat /mymapreduce12/out/1.txt

    图一为我的运行结果,图二为实验结果

    经过对比,发现结果一样

     

     

    此处为浏览器截图

     

  • 相关阅读:
    面向Java新手的日志 承 一 异常的使用
    现代JVM内存管理方法及GC的实现和主要思路
    现代Java EE应用调优和架构 大纲篇 (暂定名)
    无聊的解决方案
    代码生成器项目正式启动
    现代Java应用的性能调优方法及开发要点
    我的十年
    快慢之间 一个多线程Server疑难杂症修复记录
    面向Java新手的日志 起
    MongoTemplate项目启动
  • 原文地址:https://www.cnblogs.com/wangdayang/p/15582259.html
Copyright © 2011-2022 走看看