PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19711 | Accepted: 9035 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
分析
主要是建图,增加一个源点和汇点,将源点和第一个有这个猪圈钥匙的顾客连起来,边权就是这个猪圈猪的数量,如果源点和某个节点有重边的话,合并就是了
之后的顾客对于已经开了的猪圈,将上一个顾客和他相连,边权是正无穷,可以用一个last数组来记录上一个买这个猪圈的顾客
每个顾客和汇点相连,边权是他想买猪的数量。
#include<stdio.h> #include<string.h> #include<iostream> #include<queue> using namespace std; //**************************************************** //最大流模板Edmonds_Karp算法 //初始化:G[][],st,ed //****************************************************** const int MAXN = 200+10; const int INF = 0x3fffffff; int G[MAXN][MAXN];//存边的容量,没有边的初始化为0 int path[MAXN],flow[MAXN],st,ed; int n;//点的个数,编号0~n,n包括了源点和汇点 queue<int>q; int bfs() { int i,t; while(!q.empty()) q.pop();//清空队列 memset(path,-1,sizeof(path));//每次搜索前都把路径初始化成-1 path[st]=0; flow[st]=INF;//源点可以有无穷的流流进 q.push(st); while(!q.empty()){ t=q.front(); q.pop(); if(t==ed) break; for(i=0;i<=n;i++){ if(i!=st&&path[i]==-1&&G[t][i]){ flow[i]=flow[t]<G[t][i]?flow[t]:G[t][i]; q.push(i); path[i]=t; } } } if(path[ed]==-1) return -1;//即找不到汇点上去了。找不到增广路径了 return flow[ed]; } int Edmonds_Karp() { int max_flow=0; int step,now,pre; while((step=bfs())!=-1){ max_flow+=step; now=ed; while(now!=st){ pre=path[now]; G[pre][now]-=step; G[now][pre]+=step; now=pre; } } return max_flow; } int val[1100]; int last[1100]; int main() { int N,M; scanf("%d%d",&M,&N); st=0,ed=N+1,n=N+1; memset(val,0,sizeof(val)); memset(last,0,sizeof(last)); for(int i=1;i<=M;i++) scanf("%d",&val[i]); for(int i=1;i<=N;i++){ int A,B,v; scanf("%d",&A); for(int j=1;j<=A;j++){ scanf("%d",&v); if(last[v]==0){ G[st][i]+=val[v]; last[v]=i; } else{ G[last[v]][i]=INF; last[v]=i; } } scanf("%d",&B); G[i][ed]=B; } printf("%d ",Edmonds_Karp()); return 0; }