zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party (最短路)

    Silver Cow Party

    Time Limit: 2000MS Memory Limit: 65536K

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    模板题,分别对原图和逆图求一次最短路就行了
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    using namespace std;
    
    const int MAXN = 1100;
    const int INF = 0x3f3f3f3f;
    int cost[MAXN][MAXN];
    int dis1[MAXN];
    int dis2[MAXN];
    bool vis[MAXN];
    
    void Dijkstra(int n,int dis[],int st)
    {
        memset(vis,false,sizeof(vis));
        int minc,k;
        vis[st]=true;
        for(int i=1;i<=n;i++) dis[i]=cost[st][i];
        dis[st]=0;
        for(int i=1;i<=n;i++){
            minc=INF;
            for(int j=1;j<=n;j++){
                if(!vis[j]&&dis[j]<minc){
                    minc=dis[j];
                    k=j;
                }
            }
            if(minc>=INF) break;
            vis[k]=true;
            for(int j=1;j<=n;j++)
                if(!vis[j]&&dis[k]+cost[k][j]<dis[j])
                   dis[j]=dis[k]+cost[k][j];
        }
    }
    
    int main()
    {
        int N,M,X;
        int u,v,w;
        while(scanf("%d%d%d",&N,&M,&X)!=EOF){
            memset(dis1,0,sizeof(dis1));
            memset(dis2,0,sizeof(dis2));
            for(int i=1;i<=N;i++){
                for(int j=1;j<=N;j++){
                    if(i==j) cost[i][j]=0;
                    else cost[i][j]=INF;
                }
            }
            for(int i=1;i<=M;i++){
                scanf("%d%d%d",&u,&v,&w);
                cost[u][v]=w;
            }
            Dijkstra(N,dis1,X);
            for(int i=1;i<=N;i++)
                for(int j=1;j<i;j++)
                    swap(cost[i][j],cost[j][i]);
            Dijkstra(N,dis2,X);
            int ans=0;
            for(int i=1;i<=N;i++) ans=max(ans,dis1[i]+dis2[i]);
            printf("%d
    ",ans);
        }
        return 0;
    }
     
  • 相关阅读:
    drf请求生命周期
    正向代理和反向代理
    cbv源码分析
    Python搭建调用本地dll的Windows服务(浏览器可以访问,附测试dll64位和32位文件)
    Python实现聊天机器人接口封装部署
    Python实现机器人语音聊天
    Python爬虫下载美女图片(不同网站不同方法)
    微信小程序-点餐系统
    Win10系统Python3.8的升级与安装
    Python破解Wifi密码思路
  • 原文地址:https://www.cnblogs.com/wangdongkai/p/5627503.html
Copyright © 2011-2022 走看看