zoukankan      html  css  js  c++  java
  • hihocoder 1388 Periodic Signal

    Periodic Signal
     
    时间限制:5000ms
    单点时限:5000ms
    内存限制:256MB

    Description

    Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling.

    One day, the device fell on the ground accidentally. Profess X wanted to check whether the device can still work properly. So he ran another n Hz sampling to the fallen device and got B0 ... Bn-1.

    To compare two periodic signals, Profess X define the DIFFERENCE of signal A and B as follow:

    You may assume that two signals are the same if their DIFFERENCE is small enough. 
    Profess X is too busy to calculate this value. So the calculation is on you.

    Input

    The first line contains a single integer T, indicating the number of test cases.

    In each test case, the first line contains an integer n. The second line contains n integers, A0 ... An-1. The third line contains n integers, B0 ... Bn-1.

    T≤40 including several small test cases and no more than 4 large test cases.

    For small test cases, 0<n≤6⋅103.

    For large test cases, 0<n≤6⋅104.

    For all test cases, 0≤Ai,Bi<220.

    Output

    For each test case, print the answer in a single line.

    Sample Input
    2
    9
    3 0 1 4 1 5 9 2 6
    5 3 5 8 9 7 9 3 2
    5
    1 2 3 4 5
    2 3 4 5 1
    Sample Output
    80
    0
    /*
     * hihocoder 1388 Periodic Signal
     *
     * 把式子变形一下就是求Ai*Bi+k求和的最大值,想到用FFT来求
     * 会因为精度问题不能过,这是找出最小的那个k,然后重新算即可。
     */
    
    #include <bits/stdc++.h>
    using namespace std;
    
    const int MAXN = 200000+10;
    const double PI = acos(-1.0);
    
    struct Complex
    {
        double r,i;
        Complex(double _r=0,double _i=0):r(_r),i(_i){}
        Complex operator + (const Complex& rhs)
        {
            return Complex(r+rhs.r,i+rhs.i);
        }
        Complex operator - (const Complex& rhs)
        {
            return Complex(r-rhs.r,i-rhs.i);
        }
        Complex operator * (const Complex &rhs)
        {
            return Complex(r*rhs.r - i*rhs.i,i*rhs.r + r*rhs.i);
        }
    };
    /*
     * 进行FFT和IFFT前的反转变换。
     * 位置i和 (i二进制反转后位置)互换
     * len必须取2的幂
     */
    void Rader(Complex F[],int len)
    {
        int j = len >> 1;
        for(int i = 1;i < len - 1;++i)
        {
            if(i < j) swap(F[i],F[j]);  // reverse
            int k = len>>1;
            while(j>=k)
            {
                j -= k;
                k >>= 1;
            }
            if(j < k) j += k;
        }
    }
    /*
     * 做FFT
     * len必须为2^k形式,
     * on==1时是DFT,on==-1时是IDFT
     */
    void FFT(Complex F[],int len,int t)
    {
        Rader(F,len);
        for(int h=2;h<=len;h<<=1)
        {
            Complex wn(cos(-t*2*PI/h),sin(-t*2*PI/h));
            for(int j=0;j<len;j+=h)
            {
                Complex E(1,0); //旋转因子
                for(int k=j;k<j+h/2;++k)
                {
                    Complex u = F[k];
                    Complex v = E*F[k+h/2];
                    F[k] = u+v;
                    F[k+h/2] = u-v;
                    E=E*wn;
                }
            }
        }
        if(t==-1)   //IDFT
            for(int i=0;i<len;++i)
                F[i].r/=len;
    }
    void Conv(Complex a[],Complex b[],int len) //求卷积
    {
        FFT(a,len,1);
        FFT(b,len,1);
        for(int i=0;i<len;++i) a[i] = a[i]*b[i];
        FFT(a,len,-1);
    }
    Complex va[MAXN],vb[MAXN];
    int A[MAXN],B[MAXN],n,len;
    int AA[MAXN];
    void init()
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%d",&A[i]);
        for(int i=0;i<n;i++) scanf("%d",&B[i]);
        for(int i=n;i<2*n;i++) B[i]=B[i-n];
        for(int i=0;i<n;i++) AA[i]=A[n-i-1];
        len=1;
        while(len<2*n) len<<=1;
        for(int i=0;i<n;i++) va[i]=Complex(AA[i],0);
        for(int i=n;i<len;i++) va[i]=Complex(0,0);
        for(int i=0;i<2*n;i++) vb[i]=Complex(B[i],0);
        for(int i=2*n;i<len;i++) vb[i]=Complex(0,0);
    }
    void solve()
    {
        init();
        Conv(va,vb,len);
        double ans=0;
        int k;
        for(int i=n-1;i<=2*n-2;i++)
        {
            if(va[i].r>ans)
            {
                ans=va[i].r;
                k=i;
            }
        }
        k-=n-1;
        long long a=0,b=0,ab=0;
        for(int i=0;i<n;i++) a+=(long long)A[i]*A[i];
        for(int i=0;i<n;i++) b+=(long long)B[i]*B[i];
        for(int i=0;i<n;i++) ab+=(long long)A[i]*B[i+k];
        long long res=a+b-2*ab;
        printf("%lld
    ",res);
    }
    int main()
    {
        int T;
        int n;
        scanf("%d",&T);
        while(T--)
        {
            solve();
        }
        return 0;
    }
  • 相关阅读:
    快学scala习题解答--第五章 类
    从头认识java-18.2 主要的线程机制(2)-Executors的使用
    关于Bootstrap的理解
    Raw-OS源代码分析之idle任务
    Scilab 的画图函数(3)
    HDU2586.How far away ?——近期公共祖先(离线Tarjan)
    Codeforces Round #311 (Div. 2) A,B,C,D,E
    presto访问 Azure blob storage
    Presto集群安装配置
    Presto架构及原理
  • 原文地址:https://www.cnblogs.com/wangdongkai/p/5906954.html
Copyright © 2011-2022 走看看