zoukankan      html  css  js  c++  java
  • DBSCAN(Density-based spatial clustering of applications with noise)

    Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

    In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

    Contents
    1 Preliminary
    2 Algorithm
    3 Complexity
    4 Advantages
    5 Disadvantages
    6 Parameter estimation
    7 Extensions
    8 Availability
    9 See also
    10 Notes
    11 References
    11.1 Further readin

    Preliminary

    Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

    A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
    A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
    All points not reachable from any other point are outliers.
    Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

    wiki: https://en.wikipedia.org/wiki/DBSCAN

  • 相关阅读:
    Dockerfile指令学习 (转)
    手机触屏滑动图片切换插件swiper.js
    基于jquery网站左侧下拉菜单
    支持移动触摸设备的简洁js幻灯片插件
    基于jquery仿天猫分类导航banner切换
    基于jQuery图像碎片切换效果插件FragmentFly
    基于jQuery在线问卷答题系统代码
    基于CSS3自定义发光radiobox单选框
    基于jQuery左右滑动切换图片代码
    基于CSS3和jQuery实现的3D相册
  • 原文地址:https://www.cnblogs.com/wangduo/p/6131916.html
Copyright © 2011-2022 走看看