zoukankan      html  css  js  c++  java
  • DBSCAN(Density-based spatial clustering of applications with noise)

    Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

    In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

    Contents
    1 Preliminary
    2 Algorithm
    3 Complexity
    4 Advantages
    5 Disadvantages
    6 Parameter estimation
    7 Extensions
    8 Availability
    9 See also
    10 Notes
    11 References
    11.1 Further readin

    Preliminary

    Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

    A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.
    A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
    All points not reachable from any other point are outliers.
    Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

    wiki: https://en.wikipedia.org/wiki/DBSCAN

  • 相关阅读:
    安装mysql警告 warning: mysql-community-server-5.7.19-1.el6.x86_64.rpm: Header V3 DSA/SHA1 Signature, key ID 5072e1f5: NOKEY
    RPM方式安装MySQL5.6
    CentOS7安装MySQL冲突和问题解决小结
    Linux(64) 下 Tomcat + java 环境搭建
    自写Jquery插件 Combobox
    自写Jquery插件 Datagrid
    自写Jquery插件 Menu
    scrapy 中间件
    提高scrapy爬取效率配置
    scrapy基于请求传参实现深度爬取
  • 原文地址:https://www.cnblogs.com/wangduo/p/6131916.html
Copyright © 2011-2022 走看看