前面对R-CNN系的目标检测方法进行了个总结,其中对目标的定位使用了边框回归,当时对这部分内容不是很理解,这里单独学习下。
R-CNN中最后的边框回归层,以候选区域(Region proposal)为输入,来对Region proposal中包含的目标进行准将的定位。但是,这个输入的候选区域通常不会正确的包含目标区域,如下图:
绿色边框是飞机的Ground Truth边框,绿色的是Region proposal边框,虽然Region proposal中包含了目标飞机,但是其定位却不是很准确,这就需要对候选区域的边框进行修正,调整其位置和大小,以使其能够更为接近绿色的Ground Truth边框。
边框回归的方法
无论是Ground Truth边框还是Region proposal边框,可以使用一个四元组((x,y,w,h))来表示。其中,((x,y))表示边框的中心位置,((w,h))表示边框的宽和高。
在边框回归时,实际就是找到一种变换,使修正的后的Region proposal边框位置和Ground Truth边框尽可能的接近,公式表示如下:
其中,((P_x,P_y,P_w,P_h))输入的候选区域的边框,((G_x,G_y,G_w,G_h))是Ground Truth边框。
那么这种变换(f)怎么进行呢?
观察边框的四元组表示((x,y))表示中心位置,对于位置的修正通常使用平移;((w,h))表示边框的宽和高,则可以使用缩放进行修正。也就是对边框的回归修正,
- 对边框的中心位置进行平移((Delta x,Delta y))
则修正的中心位置就是
- 对边框的宽和高进行缩放((S_w,S_h)),
修正后的边框的宽和高为
修正后的边框((hat{G_x},hat{G_y},hat{G_w},hat{G_h} ))要近似等于Ground Truth的边框。
通过上述公式可以知道,边框回归实际上就是学习(d_x(P),d_y(P),d_w(P),d_h(P))这4个变换。在边框回归的全连接层,输入的是候选区域的特征信息(X)以及其边框信息(P),要学习的是全连接层的权值矩阵(W),也就说回归的全连接层就实现了上述变换,输出的是(d_x(P),d_y(P),d_w(P),d_h(P)),经过上述公式的可以得到平移和缩放((Delta x,Delta y,S_w,S_h))。 对候选区域的边框进行该平移和缩放得到的边框尽可能的和Ground Truth相近。
学习得到的(d_x(P),d_y(P),d_w(P),d_h(P))通过数码的公式可以很容易得到((Delta x,Delta y,S_w,S_h)),也可以说学习得到的是((Delta x,Delta y,S_w,S_h))。 这两者没有区别,不用做区分。 但是在计算预测边框位置的时候,需要注意。
损失函数
R-CNN使用一个全连接网络实现边框的回归,
- 其输入的是候选区域的特征及其边框((P_x,P_y,P_w,P_h))
- 输出的该候选框要进行的平移和缩放((Delta x,Delta y,S_w,S_h))。
- 要学习的是权值矩阵(W),以使候选框进行((Delta x,Delta y,S_w,S_h))变换后,尽可能和Ground Truth接近。
有了以上认识,来看下损失函数的设计
其中,(L_{cls}(p,u))是分类的损失函数,(p_u)是class u的真实分类的概率。这里,约定(u = 0)表示背景,不参与边框回归的损失计算。上面是Fast R-CNN将分类的损失和边框回归的损失放到了一起,这里这关注边框回归的损失
其中,(u)表示类别,(t^u)表示预测边框的偏移量(也就是预测边框进行(t^u)偏移后,能够和真实边框最接近),(v)表示预测边框和实际边框之间真正的偏移量。
也就是(t^u = (Delta x,Delta y,S_w,S_h))为学习得到的偏移量,而(v)则是输入的候选区域的边框和Ground Truth的真正偏移。
训练样本偏移(v)的构造
我们使用下面的公式描述了边框修正的过程
(P)为输入的边框,(hat{G})为修正后的边框,修正使用的平移和缩放为((Delta x,Delta y,S_w,S_h))。通过上述的公司,就可以得到训练样本(P = (P_x,P_y,P_w,P_h))相对于Ground Truth(G = (G_x,G_y,G_w,G_h))边框的真实偏移量(v)
偏移量的构造
边框回归的偏移量使如下公式表示
从上面公式可知,从边框回归的学习得到的(d_x(P),d_y(P),d_w(P),d_h(P))并没有直接用于平移和缩放,而是加了一步处理:对于平移,添加了比例宽高比例因子;宽和高的缩放,使用其比例的(log)形式。
对于中心点平移,学习到的值需要添加宽和高的因子。这是由于,CNN具有尺度不变性,对于不同尺度的同一个目标,在最后的特征输出层学习到的特征是相同。如下图
两个不同尺度的人,CNN提取的特征分别为(sigma_1,sigma_2),这两个特征应该是相同的。 假如边框回归学习到的映射为(f),且(f(sigma))学习到的量。 以(x)为例,(x1,x2)分别为两个人的Ground Truth,(P_{1x},P_{2x})为两个候选区域的(x)坐标。假如,(f(sigma))直接表示平移的差值,则有(x_1 - P_{1x} = f(sigma_1),x2-P_{2x}=f(sigma_2))。而(sigma_1,sigma_2),这两个特征是相同的,则有(f(sigma_1) = f(sigma_2))。故有(x_1 - P_{1x} = x2-P_{2x})。从,上图看,这两个不同尺度的人的平移量,显然是不相同的。 所以,将学习到的量作为坐标偏移显然是不可行的,R-CNN中给其添加了个尺度因子,也就是目标的宽和高。 如下:
尺度(宽和高)的缩放,取其(log)形式。
需要学习得到宽和高的缩放因子,就需要将学习到的值限制为大于0,这里就取其(exp(d_w(P)),来保证缩放因子都大于0.
总结
边框回归输入的是CNN学习到的候选区域的特征,以及候选区域的边框信息((x,y,w,y))。通过学习得到映射(d_x(P),d_y(P),d_w(P),d_h(P))。(P_wd_x(P),P_hd_y(P))添加尺度因子后,作为坐标的平移;(exp(d_w(P)),exp(d_h(P)))取作为宽和高的缩放。