前言
选择支和解答题结合后,产生了一种新的题型——选择解答题[不妨先这样定义其名称],对不同的选择方案,其解答结果往往不太一样;后来参加培训,专家称这类题目为条件不良或结构不良试题。
结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
典例剖析
(1). 求数列 ({a_{n}}) 的通项公式.
(2). 求数列 ({b_{n}}) 的前 (n) 项和.
解析:[第一种选择],选择条件①: (a_{2}+a_{4}=10),和条件②:$ b_{2} b_{4}=4$,
(1). 设 ({a_{n}}) 的公差为 (d), 由题意可得 (a_{1}=1),((a_{1}+d)+(a_{1}+3 d)=10),
解得 (a_{1}=1), (d=2), 则 (a_{n}=a_{1}+(n-1)d=2n-1), (nin N^{*}).
(2). 设 ({b_{n}}) 的公比为 (q(q>0)), 由题意可得 (b_{2}=1),(b_{4}=4),
则 (q^{2}=cfrac{b_{4}}{b_{2}}=4), 解得 (q=2), (b_{1}=cfrac{1}{2}),
所以数列 ({b_{n}}) 的前 (n) 项和为 (cfrac{frac{1}{2}(1-2^{n})}{1-2}=2^{n-1}-cfrac{1}{2}).
[第二种选择]:若选择条件①: (a_{2}+a_{4}=10),条件③: (b_{4}=a_{5});
则 (1).简解得到(a_1=1),(d=2),则 (a_n=2n-1);
(2). 简解得到,(b_1=cfrac{1}{3}),(q=3),则 (S_n=cfrac{1}{6}(3^n-1));
[第三种选择]:若选择条件②:(b_{2}b_{4}=4),条件③: (b_{4}=a_{5});
则 (1). 由(b_2=1)以及(b_{2}b_{4}=4),得到(b_4=4) 且 (q=2),则(a_5=b_4=4),
故(d=cfrac{a_5-a_1}{5-1}=cfrac{3}{4}),则得到 (a_n=cfrac{3}{4}n+cfrac{1}{4});
(2). 由 (q=2)且(b_2=1) ,得到(b_1=cfrac{1}{2}),简解得到 (S_n=cfrac{1}{2}(2^n-1));
已知( riangle ABC)的内角(A),(B),(C)的对边为(a),(b),(c),_____________,(A=cfrac{pi}{3}),(b=sqrt{2}),求( riangle ABC)的面积;
分析:由①(b^2+sqrt{2}ac=a^2+c^2)可得,(cos B=cfrac{sqrt{2}}{2}),则(B=cfrac{pi}{4});
由②(acos B=bsin A)可得,(sin Acos B=sin Bsin A),即(sin B=cos B),则(B=cfrac{pi}{4});
由③(sin B+cos B=sqrt{2})可得,(sqrt{2}sin(B+cfrac{pi}{4})=sqrt{2}),即(sin(B+cfrac{pi}{4})=1),则(B=cfrac{pi}{4});
故不论选择哪一个,通过不同的变形,都会得到条件(B=cfrac{pi}{4}),故原问题等价于:
已知( riangle ABC)的内角(A),(B),(C)的对边为(a),(b),(c),(B=cfrac{pi}{4}),(A=cfrac{pi}{3}),(b=sqrt{2}),求( riangle ABC)的面积;
则由正弦定理(cfrac{a}{sin A}=cfrac{b}{sin B}),可得(a=sqrt{3}),
故(S_{ riangle ABC}=cfrac{1}{2}absin C=cfrac{1}{2}absin (A+B))
(=cfrac{1}{2} imessqrt{2} imessqrt{3} imessin(cfrac{pi}{4}+cfrac{pi}{3}))
(=cfrac{3+sqrt{3}}{4});
① (b^{2}+c^{2}=52); ② ( riangle ABC) 的面积为 (3sqrt{15}), ③ (overrightarrow{AB}^{2}+overrightarrow{AB}cdotoverrightarrow{BC}=-6);
在 ( riangle ABC) 中,角 (A), (B), (C) 所对的边分别为 (a), (b), (c), 在方案______ 中,又已知 (b-c=2), (A) 为钝角, (sin A=cfrac{sqrt{15}}{4}).
(1).求边 (a) 的长;
(2).求 (sin (2C-cfrac{pi}{6})) 的值.
解析:方案一,选择条件①:
(1).由(left{egin{array}{l}b^2+c^2=52\b-c=2end{array} ight.,) 解得(left{egin{array}{l}b=6\c=4end{array} ight.,)
由于(A) 为钝角, 则(sin A=cfrac{sqrt{15}}{4}), (cos A=-cfrac{1}{4}),
则 (a^{2}=b^{2}+c^{2}-2bccos A=36+16-2 imes 6 imes 4 imes(-cfrac{1}{4})=64);
故 (a=8);
(2)由余弦定理得到, (cos C=cfrac{a^{2}+b^{2}-c^{2}}{2ab}=cfrac{64+36-16}{2 imes 8 imes 6}=cfrac{7}{8}),
故有 (sin C=sqrt{1-cfrac{49}{64}}=cfrac{sqrt{15}}{8}),
则有(cos 2C=2cos^{2}C-1=cfrac{17}{32}), (sin2C=2sin Ccos C=cfrac{7sqrt{15}}{32}),
则有 (sin(2C-cfrac{pi}{6})=sin 2Ccoscfrac{pi}{6}-cos2Csincfrac{pi}{6})
(=cfrac{7sqrt{15}}{32} imescfrac{sqrt{3}}{2}-cfrac{17}{32} imescfrac{1}{2}=cfrac{21sqrt{5}-17}{64});
方案二,选择条件②:
(1). 由 (sin A=cfrac{sqrt{15}}{4}), (S_{ riangle ABC}=cfrac{1}{2}bcsin A=cfrac{sqrt{15}}{8}bc=3sqrt{15}),
解得,(bc=24),
由(left{egin{array}{l}b^2+c^2=52\b-c=2end{array} ight.,) 解得(left{egin{array}{l}b=6\c=4end{array} ight.,)
由于(A) 为钝角, (sin A=cfrac{sqrt{15}}{4}), 则(cos A=-cfrac{1}{4}),
则 (a^{2}=b^{2}+c^{2}-2bccos A=36+16-2 imes 6 imes 4 imes(-cfrac{1}{4})=64);
故 (a=8);
(2)由余弦定理得到, (cos C=cfrac{a^{2}+b^{2}-c^{2}}{2ab}=cfrac{64+36-16}{2 imes 8 imes 6}=cfrac{7}{8}),
故有 (sin C=sqrt{1-cfrac{49}{64}}=cfrac{sqrt{15}}{8}),
则有(cos 2C=2cos^{2}C-1=cfrac{17}{32}), (sin2C=2sin Ccos C=cfrac{7sqrt{15}}{32}),
则有 (sin(2C-cfrac{pi}{6})=sin 2Ccoscfrac{pi}{6}-cos2Csincfrac{pi}{6})
(=cfrac{7sqrt{15}}{32} imescfrac{sqrt{3}}{2}-cfrac{17}{32} imescfrac{1}{2}=cfrac{21sqrt{5}-17}{64});
方案三,选择条件③:
(1). 由于(A) 为钝角, (sin A=cfrac{sqrt{15}}{4}), 则(cos A=-cfrac{1}{4}),
(overrightarrow{AB^{2}})(+)(overrightarrow{AB})(cdot)(overrightarrow{BC})(=)(overrightarrow{AB})(cdot)((overrightarrow{AB})(+)(overrightarrow{BC}))(=)(overrightarrow{AB})(cdot)(overrightarrow{AC})(=)(bccos A=-6),
解得,(bc=24),
由(left{egin{array}{l}b^2+c^2=52\b-c=2end{array} ight.,) 解得(left{egin{array}{l}b=6\c=4end{array} ight.,)
由于(A) 为钝角, (sin A=cfrac{sqrt{15}}{4}), 则(cos A=-cfrac{1}{4}),
则 (a^{2}=b^{2}+c^{2}-2bccos A=36+16-2 imes 6 imes 4 imes(-cfrac{1}{4})=64);
故 (a=8);
(2)由余弦定理得到, (cos C=cfrac{a^{2}+b^{2}-c^{2}}{2ab}=cfrac{64+36-16}{2 imes 8 imes 6}=cfrac{7}{8}),
故有 (sin C=sqrt{1-cfrac{49}{64}}=cfrac{sqrt{15}}{8}),
则有(cos 2C=2cos^{2}C-1=cfrac{17}{32}), (sin2C=2sin Ccos C=cfrac{7sqrt{15}}{32}),
则有 (sin(2C-cfrac{pi}{6})=sin 2Ccoscfrac{pi}{6}-cos2Csincfrac{pi}{6})
(=cfrac{7sqrt{15}}{32} imescfrac{sqrt{3}}{2}-cfrac{17}{32} imescfrac{1}{2}=cfrac{21sqrt{5}-17}{64});
在数列 ({a_{n}}) 中, (a_{1}=1) ,_____________, 其中 (n in N^{*}),
(1)求 ({a_{n}}) 的通项公式;
(2)若 (a_{1}), (a_{n}), (a_{m}) 成等比数列,其中 (m), (nin N^{*}), 且 (m>n>1),求 (m) 的最小值.
解析:当选择①时,
(1).当 (n=1) 时, 由 (S_{1}=a_{1}=1), 得 (p=0),
当 (n geqslant 2) 时,由题意得 (S_{n-1}=(n-1)^{2}), 则(a_{n}=S_{n}-S_{n-1}=2n-1(ngeqslant 2)),
经检验, (a_{1}=1) 符合上式, 故 (a_{n}=2 n-1(n in N^{*})).
(2). 由 (a_{1}), (a_{n}), (a_{m}) 成等比数列,得 (a_{n}^{2}=a_{1}cdot a_{m}) ,
即 ((2n-1)^{2}=1 imes(2m-1)),化简得 (m=2 n^{2}-2 n+1=2(n-cfrac{1}{2})^{2}+cfrac{1}{2}),
由于(m, n) 是大于 (1) 的正整数,且 (m>n),
所以 当 (n=2) 时, (m) 有最小值为 (5).
当选择②时:
(1). 由(a_{n}=a_{n+1}-3), 则(a_{n+1}-a_{n}=3),
故数列 ({a_{n}}) 是公差 (d=3) 的等差数列.
所以 (a_{n}=a_{1}+(n-1)d=3n-2) ((nin N^{*}))
(2). 由 (a_{1}), (a_{n}), (a_{m}) 成等比数列,得 (a_{n}^{2}=a_{1}cdot a_{m}),
即 ((3n-2)^{2}=1 imes(3m-2)),化简得, (m=3n^{2}-4n+2=3(n-cfrac{2}{3})^{2}+cfrac{2}{3}),
由于(m, n) 是大于 (1) 的正整数,且 (m>n),
所以 当 (n=2) 时, (m) 有最小值为 (6).
当选择③时:
(1). 由 (2a_{n+1}=a_{n}+a_{n+2}), 得 (a_{n+1}-a_{n}=a_{n+2}-a_{n+1}),
故 数列 ({a_{n}}) 是等差数列, 又 (a_{1}=1), (a_{6}=a_{1}+5d=11),
故(d=2),则 (a_{n}=a_{1}+(n-1)d=2n-1 (nin N^{*})),
(2). 由 (a_{1}), (a_{n}), (a_{m}) 成等比数列,得 (a_{n}^{2}=a_{1}cdot a_{m}),
即 ((2n-1)^{2}=1 imes(2m-1)),化简得 (m=2n^{2}-2n+1=2(n-cfrac{1}{2})^{2}+cfrac{1}{2}),
由于(m, n) 是大于 (1) 的正整数,且 (m>n),
所以 当 (n=2) 时, (m) 有最小值为 (5).