zoukankan      html  css  js  c++  java
  • 异面直线所成的角

    前言

    两条共面直线所成的角的范围是: ([0,cfrac{pi}{2}]) ,两条异面直线所成的角的范围是 ((0,cfrac{pi}{2}]) .

    求解思路

    一般来说,常见的求解思路有两个。其一,转化法,具体做法,将两条异面直线中的一条平移到和另一条直线相交的位置,找到这两条相交直线所成的角或者其补角(必须保证其范围在 ((0,cfrac{pi}{2}]) 内),然后利用其所在的三角形来求解,此时可能用到余弦定理;其二,利用空间向量法求解。这一方法一般是理科学生要求掌握的,此时需要熟练掌握直线的方向向量,向量的内积公式,向量的坐标运算等 .

    典例剖析

    【2021年高考乙卷文数第(10)题理数第(5)题】 在正方体 (ABCD-A_{1}B_{1}C_{1}D_{1}) 中, (P)(B_{1}D_{1}) 的中点, 则直线 (PB)(AD_{1}) 所成的角为 【(quad)

    $A.cfrac{pi}{2}$ $B.cfrac{pi}{3}$ $C.cfrac{pi}{4}$ $D.cfrac{pi}{6}$

    解析: 由于 (AD_{1}//BC_{1}), 所以 (angle PBC_{1}) 是直线 (PB)(AD_{1}) 所成的角[或所成角的补角]准确的说法还需要添加这句话,或所成角的补角,原因是两条直线所成的角的范围是 ([0,cfrac{pi}{2}]) ,而图形中的角 (angle PBC_{1}) 的大小不一定在此范围内,

    设正方体 (ABCD-A_{1}B_{1}C_{1}D_{1}) 的棱长为 (2)

    (PB_{1}=PC_{1}=cfrac{1}{2}sqrt{2^{2}+2^{2}}=sqrt{2})

    (BC_{1}=sqrt{2^{2}+2^{2}}=2sqrt{2})(BP=sqrt{2^{2}+(sqrt{2})^{2}}=sqrt{6})

    所以 (cosangle PBC_{1}=cfrac{PB^{2}+BC_{1}^{2}-PC_{1}^{2}}{2 imes PB imes BC_{1}}=cfrac{6+8-2}{2 imessqrt{6} imes2sqrt{2}}=cfrac{sqrt{3}}{2})

    所以,(angle PBC_{1}=cfrac{pi}{6}), 则直线 (PB)(AD_{1}) 所成的角为 (cfrac{pi}{6}), 故选: (D) .

    【2017凤翔中学高三第三次月考第10题】【异面直线所成的角】长方体(ABCD-A_1B_1C_1D_1)中,(AB)(=)(AA_1)(=)(2)(AD=1),则异面直线 (BC_1)(AC) 所成的角的余弦值是多少?

    法1:立体几何法,基本求解步骤:①作:作出所要求的角;②证:证明所作的角即为所求的角;③算:计算所作角的某种三角值;

    思路:将两条异面直线平移至一个三角形中,然后解三角形得到。

    (BC_1)平移到(AD_1),联结(CD_1),则(angle CAD_1)为两条异面直线所成的角,

    (Delta ACD_1)中,可知(AC=sqrt{5})(AD_1=sqrt{5})(CD_1=2sqrt{2})

    由余弦定理可知(cosangle CAD_1=cfrac{(sqrt{5})^2+(sqrt{5})^2-(2sqrt{2})^2}{2cdot sqrt{5}cdot sqrt{5}}=cfrac{1}{5})

    法2:空间向量法,

    以点(D)为坐标原点,分别以(DA、DC、DD_1)所在的直线为(x、y、z)轴建立如图所示的直角坐标系,

    则点(D(0,0,0))(A(1,0,0))(C(0,2,0))(B(1,2,0))(D_1(0,0,2))(A_1(1,0,2))(B_1(1,2,2))(C_1(0,2,2))

    (overrightarrow{BC_1}=(-1,0,2))(overrightarrow{AC}=(-1,2,0))

    设两条异面直线所成的角为( heta),则(cos heta=|cos<overrightarrow{BC_1},overrightarrow{AC}>|=cfrac{(-1) imes(-1)+0 imes2+2 imes 0}{sqrt{(-1)^2+0^2+2^2} imessqrt{(-1)^2+2^2+0^2}}=cfrac{1}{5})

    备注:两条异面直线所成角的范围([0,cfrac{pi}{2}]),两个向量所成角的范围([0,pi])

    【2019届宝鸡市高三理科数学质检Ⅰ第10题】已知正三棱柱(ABC-A_1B_1C_1)中,(AB=AA_1=2),则异面直线(AB_1)(CA_1)所成角的余弦值为【】

    $A.0$ $B.-cfrac{1}{4}$ $C.cfrac{1}{4}$ $D.cfrac{1}{2}$

    【法1-1】空间向量法,第一种建系方式;以点(A)为坐标原点,以(AC)(AA_1)分别为(y)(z)轴,以和(AC)垂直的直线为(x)轴,建立如图所示的空间直角坐标系,

    (A(0,0,0))(B(sqrt{3},1,0))(A_1(0,0,2))(B_1(sqrt{3},1,2))(C(0,2,0))

    (overrightarrow{AB_1}=(sqrt{3},1,2))(overrightarrow{A_1C}=(0,2,-2)),且线线角的范围是([0,cfrac{pi}{2}])

    故所求角的余弦值为(|cos<overrightarrow{AB_1},overrightarrow{A_1C}>|=cfrac{|1 imes 2+2 imes(-2)|}{sqrt{8} imessqrt{8}}=cfrac{1}{4})。故选(C)

    【法1-2】空间向量法,第二种建系方式;以(BN)的中点为坐标原点建立如图所示的空间直角坐标系,

    (A(1,0,0))(B(0,sqrt{3},0))(C(-1,0,0))(A_1(1,0,2))(B_1(0,sqrt{3},2))(C_1(-1,0,2))

    (overrightarrow{AB_1}=(-1,sqrt{3},2))(overrightarrow{A_1C}=(-2,0,-2)),且线线角的范围是([0,cfrac{pi}{2}])

    故所求角的余弦值为(|cos<overrightarrow{AB_1},overrightarrow{A_1C}>|=cfrac{|-1 imes (-2)+sqrt{3} imes 0+2 imes(-2)|}{sqrt{8} imessqrt{8}}=cfrac{1}{4})。故选(C)

    【法2】:立体几何法,补体平移法,将正三棱柱补体为一个底面为菱形的直四棱柱,连结(B_1D),则(B_1D//A_1C)

    故异面直线(AB_1)(CA_1)所成角,即转化为共面直线(AB_1)(B_1D)所成的角(angle AB_1D),连结(AD)

    (Delta AB_1D)中,(AB=AA_1=2),可得(AB_1=B_1D=2sqrt{2})(AD=2sqrt{3})

    由余弦定理可知,(cosangle AB_1D=cfrac{(2sqrt{2})^2+(2sqrt{2})^2-(2sqrt{3})^2}{2 imes 2sqrt{2} imes 2sqrt{3}}=cfrac{1}{4})

    故所求为(cfrac{1}{4}),故选(C)

    【2019届高三理科数学三轮模拟试题】在长方体(ABCD-A_1B_1C_1D_1)中,已知直线(BD)与平面(ADD_1A_1)所成角的正切值为(2),直线(BD_1)与平面(ABCD)所成角的正弦值为(cfrac{2}{3}),则异面直线(CD_1)(BD_1)所成角的余弦值为【】

    $A.cfrac{sqrt{10}}{5}$ $B.cfrac{3sqrt{5}}{10}$ $C.cfrac{sqrt{55}}{10}$ $D.cfrac{sqrt{15}}{5}$

    分析:如图所示,直线(BD)与平面(ADD_1A_1)所成角的为(angle BDA),则由(tanangle BDA=2),可以设(AB=2k)(AD=k),则(BD=sqrt{5}k),直线(BD_1)与平面(ABCD)所成角的为(angle D_1BD),则由(sinangle D_1BD=cfrac{2}{3}),可以设(DD_1=2m)(BD_1=3m),则(BD=sqrt{5}m)

    故可以令(m=k=1),则长方体的三维(AB=2)(AD=1)(DD_1=2),接下来的思路可以有两个:

    思路1:平移法,将异面直线(CD_1)(BD_1)通过平移放置到同一个三角形( riangle AVD_1)中,这样(AC=sqrt{5})(AD_1=sqrt{5})(CD_1=2sqrt{2}),则异面直线(CD_1)(BD_1)所成的角即为(angle AD_1C),由余弦定理可知(cos angle AD_1C=cfrac{sqrt{10}}{5}).故选(A).

    思路2:空间向量法,不作平移,直接利用直线的方向向量的夹角来求解;

    如图,正四面体(P-ABC)中,(D)(E)分别是(AB)(PC)的中点,则直线(AE)(PD)所成角的余弦值是多少?

    法1:空间向量法,如图所示,(PFperp)(ABC)(F)(Delta ABC)的中心,

    以点(D)为坐标原点,以(DF)(DB)以及与(FP)平行的直线分别为(x)(y)(z)轴建立如图所示的空间直角坐标系,

    令正四面体的棱长为(2),则得到以下点的空间坐标

    (D(0,0,0))(A(0,-1,0))(B(0,1,0))

    (C(-sqrt{3},0,0))(P(-cfrac{sqrt{3}}{3},0,cfrac{2sqrt{6}}{3}))(E(-cfrac{2sqrt{3}}{3},0,cfrac{sqrt{6}}{3}))

    则有(overrightarrow{PD}=(cfrac{sqrt{3}}{3},0,-cfrac{2sqrt{6}}{3}))(overrightarrow{AE}=(-cfrac{2sqrt{3}}{3},1,cfrac{sqrt{6}}{3}))

    令异面直线(PD)(AE)的夹角为( heta),则有(cos heta)

    (=cfrac{|cfrac{sqrt{3}}{3}cdot (-cfrac{2sqrt{3}}{3})+0cdot 1+(-cfrac{2sqrt{6}}{3}cdot cfrac{sqrt{6}}{3})|}{sqrt{(cfrac{sqrt{3}}{3})^2+(-cfrac{2sqrt{6}}{3})^2}cdot sqrt{(-cfrac{2sqrt{3}}{3})^2+1^2+(cfrac{sqrt{6}}{3})^2}}=cfrac{2}{3})

    说明:向量的夹角范围为([0,pi]),两异面直线的夹角范围([0,cfrac{pi}{2}])

    法2:立体几何法,先作再证后算。

    思路:异面直线所成的角,一般是经过平移,使其相交,构建三角形来计算。

    过点(A)(AM//BC),过点(B)(BM//AC)(AM)于点(M)

    (F)(H)(G)分别是线段(PB)(AM)(BD)的中点,连接(HF)(FG)(HG)

    则有 (EF;;{}_{=}^{//}AH) ,则(AE//FH),又(PD//FG),故(angle HFG)为两条异面直线所成的角。

    设正四面体的棱长为(2),则(AE=FH=PD=sqrt{3})(FG=cfrac{sqrt{3}}{2})

    又在(Delta AHG)中,(AH=1)(AG=cfrac{3}{2})(angle HAG=60^circ)

    由余弦定理可知,(HG=cfrac{sqrt{7}}{2})

    (Delta HFG)中,(HF=sqrt{3})(FG=cfrac{sqrt{3}}{2})(HG=cfrac{sqrt{7}}{2})

    由余弦定理可知(cosangle HFG=cfrac{2}{3})

    高阶例题

    【2019届宝鸡理数质检Ⅲ第11题】异面直线 (a)(b) 所成的角为 (cfrac{pi}{6}) ,直线 (aperp c) ,则异面直线 (b)(c) 所成角的范围是【(quad)

    $A.[cfrac{pi}{3},cfrac{pi}{2}]$ $B.[cfrac{pi}{6},cfrac{pi}{2}]$ $C.[cfrac{pi}{3},cfrac{2pi}{3}]$ $D.[cfrac{pi}{6},cfrac{5pi}{6}]$

    分析:由于求异面直线所成角的范围,故需要先明确其允许的最大范围,是((0,cfrac{pi}{2}]),怎么理解呢?采用简单原则,当同一平面内的两条直线相交时形成两对对顶角,其中的邻角互补,这样我们刻画其位置关系时,仅仅只需要([0,cfrac{pi}{2}])范围内的角就足够了,不需要范围为([0,pi]),那么异面直线所成角的范围就成了((0,cfrac{pi}{2}])

    再者我们需要将已知的直线安放在空间,最好的依托就是正方体和长方体等模型,如下图所示,

    当异面直线(a)(b)所成的角为(cfrac{pi}{6}),直线(aperp c),那么异面直线(b)(c)所成角的范围最小是(cfrac{pi}{2}-cfrac{pi}{6}=cfrac{pi}{3}),最大是(cfrac{pi}{2}+cfrac{pi}{6}=cfrac{2pi}{3}),又由于刻画异面直线所成角的范围限制,故只能是([cfrac{pi}{3},cfrac{pi}{2}]),故选(A)

    【2020届宝鸡质检1文数第16题】如图所示,三棱锥(P-ABC)中,(PAperp)平面(ABC)(PA=)(AB)(=AC)(=BC)(=2)(E)(PC)的中点,求异面直线(AE)(PB)所成角的余弦值___________。

    法1:理科学生可以使用建立空间直角坐标系的思路求解;

    法2:平移构造三角形法,取(BC)的中点(F),连接(EF)(AF)

    则由(EF//PB),可知(angle AEF)即为两条异面直线(AE)(PB)所成的角,

    ( riangle AEF)中,容易知道(AE=EF=sqrt{2})(AF=sqrt{3})

    由余弦定理可知,(cosangle AEF=cfrac{1}{4})

    【北京人大附中高二】【2016浙江卷】如图,已知平面四边形(ABCD)(AB=BC=3)(CD=1)(AD)(=)(sqrt{5})(angle ADC=90^{circ}),沿直线(AC)( riangle ACD) 翻折成 ( riangle ACD'),则直线(AC)(BD') 所成角的余弦的最大值为__________。

    法1:几何法,通过作---证---算的步骤完成。

    如图所示,取(AC)的中点(O),由于(AB=BC=3),故(BOperp AC)

    (Rt riangle ACD')中,(AC=sqrt{1^{2}+(sqrt{5})^{2}}=sqrt{6})

    (D'Eperp AC),垂足为(E)(D'E=cfrac{1 imessqrt{5}}{sqrt{6}}=cfrac{sqrt{30}}{6})

    (CO=cfrac{sqrt{6}}{2})(CE=cfrac{DC^{2}}{CA}=cfrac{1}{sqrt{6}}=cfrac{sqrt{6}}{6}),故(EO=CO-CE=cfrac{sqrt{6}}{3})

    过点(B)(BF//AC),过点(E)(EF//BO)(BF)于点(F),则(EFperp AC)

    连接(D'F)(angle FBD')异面直线(AC)(BD')所成的角求作异面直线所成的角,常用的方法是将其中的一条直线平移和另一条共面,此时这两条共面直线所成的角,即两异面直线所成的角。故两异面直线所成的角的范围为((0,cfrac{pi}{2}]),此题目中,由于(AC)//(BF),故(angle FBD')即异面直线(AC)(BD')所成的角(quad)

    则四边形(BOEF)为矩形,所以(BF=EO=cfrac{sqrt{6}}{3})

    (EF=BO=sqrt{3^{2}-(cfrac{sqrt{6}}{2})^{2}}=cfrac{sqrt{30}}{2})

    (angle FED')为二面角 (D'-CA-B)的平面角,设为( heta)

    (D'F^{2}=(cfrac{sqrt{30}}{6})^{2}+(cfrac{sqrt{30}}{2})^{2}-2 imescfrac{sqrt{30}}{6} imescfrac{sqrt{30}}{2} imescos heta)

    (=cfrac{25}{3}-5cos heta geqslant cfrac{10}{3}),当(cos heta=1) 时取等号,

    (BD')的最小值 (BD'_{min}=sqrt{cfrac{10}{3}+(cfrac{sqrt{6}}{3})^{2}}=2)

    故直线(AC)(BD')所成角(alpha)的余弦(Rt riangle BFD')中,(cos)(alpha)(=)(cfrac{邻}{斜}),由于邻边(BF)长度不变,故斜边(BD')最小时,(cosalpha)的值最大;(quad)的最大值([cosalpha]_{max}=cfrac{BF}{BD'}=cfrac{frac{sqrt{6}}{3}}{2}=cfrac{sqrt{6}}{6})

    法2: 也可以考虑使用空间向量法;

    本文来自博客园,作者:静雅斋数学,转载请注明原文链接:https://www.cnblogs.com/wanghai0666/p/14962356.html

  • 相关阅读:
    vmware ubuntu 异常关机无法连接到网络
    Speed up GCC link
    常用的一些解压命令
    Log4j 漏洞复现
    Test Case Design method Boundary value analysis and Equivalence partitioning
    CCA (Citrix Certified Administrator) exam of “Implementing Citrix XenDesktop 4”
    What is Key Word driven Testing?
    SAP AGS面试小结
    腾讯2013终端实习生一面
    指针的引用
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/14962356.html
Copyright © 2011-2022 走看看