zoukankan      html  css  js  c++  java
  • 各种角的求解

    前言

    常见的需要求解的角有:异面直线所成的角,线面角,二面角,向量的夹角;

    相关阅读:高中数学中常见角的范围表示

    线线角

    例1【2017凤翔中学高三第三次月考第10题】【异面直线所成的角】

    长方体(ABCD-A_1B_1C_1D_1)中,(AB=AA_1=2)(AD=1),则异面直线(BC_1)(AC)所成的角的余弦值是多少?

    法1:立体几何法,基本求解步骤:①作:作出所要求的角;②证:证明所作的角即为所求的角;③算:计算所作角的某种三角值;

    思路:将两条异面直线平移至一个三角形中,然后解三角形得到。

    (BC_1)平移到(AD_1),联结(CD_1),则(angle CAD_1)为两条异面直线所成的角,

    (Delta ACD_1)中,可知(AC=sqrt{5})(AD_1=sqrt{5})(CD_1=2sqrt{2})

    由余弦定理可知(cosangle CAD_1=cfrac{(sqrt{5})^2+(sqrt{5})^2-(2sqrt{2})^2}{2cdot sqrt{5}cdot sqrt{5}}=cfrac{1}{5})

    法2:空间向量法,

    以点(D)为坐标原点,分别以(DA、DC、DD_1)所在的直线为(x、y、z)轴建立如图所示的直角坐标系,

    则点(D(0,0,0))(A(1,0,0))(C(0,2,0))(B(1,2,0))(D_1(0,0,2))(A_1(1,0,2))(B_1(1,2,2))(C_1(0,2,2))

    (overrightarrow{BC_1}=(-1,0,2))(overrightarrow{AC}=(-1,2,0))

    设两条异面直线所成的角为( heta),则(cos heta=|cos<overrightarrow{BC_1},overrightarrow{AC}>|=cfrac{(-1) imes(-1)+0 imes2+2 imes 0}{sqrt{(-1)^2+0^2+2^2} imessqrt{(-1)^2+2^2+0^2}}=cfrac{1}{5})

    备注:两条异面直线所成角的范围([0,cfrac{pi}{2}]),两个向量所成角的范围([0,pi])

    例2【2019届宝鸡市高三理科数学质检Ⅰ第10题】

    已知正三棱柱(ABC-A_1B_1C_1)中,(AB=AA_1=2),则异面直线(AB_1)(CA_1)所成角的余弦值为【】

    $A.0$ $B.-cfrac{1}{4}$ $C.cfrac{1}{4}$ $D.cfrac{1}{2}$

    【法1-1】空间向量法,第一种建系方式;以点(A)为坐标原点,以(AC)(AA_1)分别为(y)(z)轴,以和(AC)垂直的直线为(x)轴,建立如图所示的空间直角坐标系,

    (A(0,0,0))(B(sqrt{3},1,0))(A_1(0,0,2))(B_1(sqrt{3},1,2))(C(0,2,0))

    (overrightarrow{AB_1}=(sqrt{3},1,2))(overrightarrow{A_1C}=(0,2,-2)),且线线角的范围是([0,cfrac{pi}{2}])

    故所求角的余弦值为(|cos<overrightarrow{AB_1},overrightarrow{A_1C}>|=cfrac{|1 imes 2+2 imes(-2)|}{sqrt{8} imessqrt{8}}=cfrac{1}{4})。故选(C)

    【法1-2】空间向量法,第二种建系方式;以(BN)的中点为坐标原点建立如图所示的空间直角坐标系,

    (A(1,0,0))(B(0,sqrt{3},0))(C(-1,0,0))(A_1(1,0,2))(B_1(0,sqrt{3},2))(C_1(-1,0,2))

    (overrightarrow{AB_1}=(-1,sqrt{3},2))(overrightarrow{A_1C}=(-2,0,-2)),且线线角的范围是([0,cfrac{pi}{2}])

    故所求角的余弦值为(|cos<overrightarrow{AB_1},overrightarrow{A_1C}>|=cfrac{|-1 imes (-2)+sqrt{3} imes 0+2 imes(-2)|}{sqrt{8} imessqrt{8}}=cfrac{1}{4})。故选(C)

    【法2】:立体几何法,补体平移法,将正三棱柱补体为一个底面为菱形的直四棱柱,连结(B_1D),则(B_1D//A_1C)

    故异面直线(AB_1)(CA_1)所成角,即转化为共面直线(AB_1)(B_1D)所成的角(angle AB_1D),连结(AD)

    (Delta AB_1D)中,(AB=AA_1=2),可得(AB_1=B_1D=2sqrt{2})(AD=2sqrt{3})

    由余弦定理可知,(cosangle AB_1D=cfrac{(2sqrt{2})^2+(2sqrt{2})^2-(2sqrt{3})^2}{2 imes 2sqrt{2} imes 2sqrt{3}}=cfrac{1}{4})

    故所求为(cfrac{1}{4}),故选(C)

    例3【2019届高三理科数学三轮模拟试题】在长方体(ABCD-A_1B_1C_1D_1)中,已知直线(BD)与平面(ADD_1A_1)所成角的正切值为(2),直线(BD_1)与平面(ABCD)所成角的正弦值为(cfrac{2}{3}),则异面直线(CD_1)(BD_1)所成角的余弦值为【】

    $A.cfrac{sqrt{10}}{5}$ $B.cfrac{3sqrt{5}}{10}$ $C.cfrac{sqrt{55}}{10}$ $D.cfrac{sqrt{15}}{5}$

    分析:如图所示,直线(BD)与平面(ADD_1A_1)所成角的为(angle BDA),则由(tanangle BDA=2),可以设(AB=2k)(AD=k),则(BD=sqrt{5}k),直线(BD_1)与平面(ABCD)所成角的为(angle D_1BD),则由(sinangle D_1BD=cfrac{2}{3}),可以设(DD_1=2m)(BD_1=3m),则(BD=sqrt{5}m)

    故可以令(m=k=1),则长方体的三维(AB=2)(AD=1)(DD_1=2),接下来的思路可以有两个:

    思路1:平移法,将异面直线(CD_1)(BD_1)通过平移放置到同一个三角形( riangle AVD_1)中,这样(AC=sqrt{5})(AD_1=sqrt{5})(CD_1=2sqrt{2}),则异面直线(CD_1)(BD_1)所成的角即为(angle AD_1C),由余弦定理可知(cos angle AD_1C=cfrac{sqrt{10}}{5}).故选(A).

    思路2:空间向量法,不作平移,直接利用直线的方向向量的夹角来求解;

    例4如图,正四面体(P-ABC)中,(D)(E)分别是(AB)(PC)的中点,则直线(AE)(PD)所成角的余弦值是多少?

    法1:空间向量法,如图所示,(PFperp)(ABC)(F)(Delta ABC)的中心,

    以点(D)为坐标原点,以(DF)(DB)以及与(FP)平行的直线分别为(x)(y)(z)轴建立如图所示的空间直角坐标系,

    令正四面体的棱长为(2),则得到以下点的空间坐标

    (D(0,0,0))(A(0,-1,0))(B(0,1,0))

    (C(-sqrt{3},0,0))(P(-cfrac{sqrt{3}}{3},0,cfrac{2sqrt{6}}{3}))(E(-cfrac{2sqrt{3}}{3},0,cfrac{sqrt{6}}{3}))

    则有(overrightarrow{PD}=(cfrac{sqrt{3}}{3},0,-cfrac{2sqrt{6}}{3}))(overrightarrow{AE}=(-cfrac{2sqrt{3}}{3},1,cfrac{sqrt{6}}{3}))

    令异面直线(PD)(AE)的夹角为( heta),则有(cos heta)

    (=cfrac{|cfrac{sqrt{3}}{3}cdot (-cfrac{2sqrt{3}}{3})+0cdot 1+(-cfrac{2sqrt{6}}{3}cdot cfrac{sqrt{6}}{3})|}{sqrt{(cfrac{sqrt{3}}{3})^2+(-cfrac{2sqrt{6}}{3})^2}cdot sqrt{(-cfrac{2sqrt{3}}{3})^2+1^2+(cfrac{sqrt{6}}{3})^2}}=cfrac{2}{3})

    说明:向量的夹角范围为([0,pi]),两异面直线的夹角范围([0,cfrac{pi}{2}])

    法2:立体几何法,先作再证后算。

    思路:异面直线所成的角,一般是经过平移,使其相交,构建三角形来计算。

    过点(A)(AM//BC),过点(B)(BM//AC)(AM)于点(M)

    (F)(H)(G)分别是线段(PB)(AM)(BD)的中点,连接(HF)(FG)(HG)

    则有(EF//==AH),则(AE//FH),又(PD//FG),故(angle HFG)为两条异面直线所成的角。

    设正四面体的棱长为(2),则(AE=FH=PD=sqrt{3})(FG=cfrac{sqrt{3}}{2})

    又在(Delta AHG)中,(AH=1)(AG=cfrac{3}{2})(angle HAG=60^circ)

    由余弦定理可知,(HG=cfrac{sqrt{7}}{2})

    (Delta HFG)中,(HF=sqrt{3})(FG=cfrac{sqrt{3}}{2})(HG=cfrac{sqrt{7}}{2})

    由余弦定理可知(cosangle HFG=cfrac{2}{3})

    线面角

    例7【2018年全国卷Ⅰ第18题】如图,四边形(ABCD)为正方形,(E)(F)分别为(AD)(BC)的中点,以(DF)为折痕把( riangle DFC)折起,使点(C)到达点(P)的位置,且(PFperp BF)

    (1).证明:平面(PEFperp)平面(ABFD)

    证明:由已知可得,(BFperp PF)(BFperp EF)

    (PFcap EF=F)(PFsubseteq)平面(PEF)(EFsubseteq)平面(PEF)

    所以(BFperp)平面(PEF),又(BFsubseteq)平面(ABFD)

    所以平面(PEFperp)平面(ABFD)

    (2).求(DP)与平面(ABFD)所成角的正弦值。

    解:作(PHperp EF),垂足为(H),由(1)得,(PHperp)平面(ABFD),以(H)为坐标原点,(overrightarrow{HF})的方向为(y)轴正方向,(|overrightarrow{BF}|)为单位长,建立如图所示的空间直角坐标系(H-xyz)

    由(1)得到,(DEperp PE),又(DP=2)(DE=1),所以(PE=sqrt{3})

    (PF=1)(EF=2),所以(PEperp PF),可得(PH=cfrac{sqrt{3}}{2})(EH=cfrac{3}{2})

    (H(0,0,0))(P(0,0,cfrac{sqrt{3}}{2}))(D(-1,-cfrac{3}{2},0))

    (overrightarrow{DP}=(1,cfrac{3}{2},cfrac{sqrt{3}}{2}))(overrightarrow{HP}=(0,0,cfrac{sqrt{3}}{2}))为平面(ABFD)的法向量,

    (DP)与平面(ABFD)所成角为( heta),则(sin heta=|cos<overrightarrow{HP},overrightarrow{DP}>|=|cfrac{overrightarrow{HP}cdot overrightarrow{DP}}{|overrightarrow{HP}||overrightarrow{DP}|}|=cfrac{frac{3}{4}}{sqrt{3}}=cfrac{sqrt{3}}{4})

    所以(DP)与平面(ABFD)所成角的正弦值为(cfrac{sqrt{3}}{4})

    面面角

    例5【2017凤翔中学第三次月考理科第19题】【二面角】

    如图所示,四棱锥(P-ABCD)中,底面(ABCD)是个边长为2的正方形,侧棱(PAperp)底面(ABCD),且(PA=2)(Q)(PA)的中点.

    (1)证明:(BDperp)平面(PAC)

    暂略

    (2)求二面角(C-BD-Q)的余弦值。

    分析:由题可知,(AB、AP、AD)两两垂直,以(A)为坐标原点,分别以(AB、AD、AP)所在直线为(x,y,z)轴建立空间直角坐标系,如图所示。

    则点(B(2,0,0))(C(2,2,0))(D(0,2,0))(Q(0,0,1))

    所以(overrightarrow{BD}=(-2,2,0))(overrightarrow{BQ}=(-2,0,1))

    设平面(BDQ)的法向量为(vec{m}=(x,y,z)),则有

    (egin{cases}vec{m}perpoverrightarrow{BD}\vec{m}perpoverrightarrow{BQ}end{cases}) (Longrightarrow egin{cases}vec{m}cdotoverrightarrow{BD}=0\vec{m}cdotoverrightarrow{BQ}=0end{cases})

    (egin{cases}-2x+2y=0\-2x+z=0end{cases}),可以取(vec{m}=(1,1,2))

    平面(BDC)的法向量为(vec{n}=(0,0,1))

    设二面角(C-BD-Q)( heta),由图可知,( heta)为钝角,则有

    (cos heta=-|cos<vec{m},vec{n}>|=-cfrac{vec{m}cdotvec{n}}{|vec{m}||vec{n}|}=-cfrac{2}{sqrt{6}}=-cfrac{sqrt{6}}{3})

    所以二面角(C-BD-Q)的余弦值为(-cfrac{sqrt{6}}{3})

    备注:二面角的范围([0,pi])

    例6【2019年高考数学试卷理科新课标Ⅱ第17题】

    如图,长方体(ABCD-A_1B_1C_1D_1)的底面(ABCD)是正方形,点(E)在棱(AA_1)上,(BEperp EC_1).

    (1).证明:(BEperp)平面(EB_1C_1)

    分析:需要证明线面垂直,往往先要转化为证明线线垂直;

    解析:由已知(B_1C_1perp)平面(ABB_1A_1)(BEsubset)平面(ABB_1A_1),故(B_1C_1perp BE)

    (BEperp EC_1)(B_1C_1subset)平面(EB_1C_1)(EC_1subset)平面(EB_1C_1)(B_1C_1cap EC_1=C_1)

    (BEperp)平面(EB_1C_1)

    (2).若(AE=A_1E),求二面角(B-EC-C_1)的正弦值;

    解析:由(1)知道(angle BEB_1=90^{circ}),由题设可知(Rt riangle ABE Rt riangle A_1B_1E),所以(angle AEB=45^{circ}),故(AE=AB)(AA_1=2AB)

    (D)为坐标原点,(overrightarrow{DA})的方向为(x)轴的正方向,(|overrightarrow{DA}|)为单位长,建立如图所示的空间直角坐标系(D-xyz)

    (C(0,1,0))(B(1,1,0))(C_1(0,1,2))(E(1,0,1))(overrightarrow{CB}=(1,0,0))(overrightarrow{CE}=(1,-1,1))(overrightarrow{CC_1}=(0,0,2))

    设平面(EBC)的法向量(vec{n}=(x,y,z))

    (left{egin{array}{l}{overrightarrow{CB}cdot vec{n}=0}\{overrightarrow{CE}cdot vec{n}=0}end{array} ight.),即(left{egin{array}{l}{x=0}\{x-y+z=0}end{array} ight.),所以可以赋值取(vec{n}=(0,-1,-1))

    设平面(ECC_1)的法向量(vec{m}=(x,y,z))

    (left{egin{array}{l}{overrightarrow{CC_1}cdot vec{m}=0}\{overrightarrow{CE}cdot vec{m}=0}end{array} ight.),即(left{egin{array}{l}{2z=0}\{x-y+z=0}end{array} ight.),所以可以赋值取(vec{m}=(1,1,0))

    于是,(cos<vec{n},vec{m}>=cfrac{vec{n}cdotvec{m}}{|vec{n}||vec{m}|}=-cfrac{1}{2})

    (<vec{n},vec{m}>=120^{circ}),所以,二面角(B-EC-C_1)的正弦值为(cfrac{sqrt{3}}{2})

    解后反思:

    1、当然,本题目同样可用点(C)做为坐标原点来建立坐标系。

    2、如果我们选取的坐标系不同,很可能(<vec{n},vec{m}>=60^{circ}),则仿照如图所示,二面角的平面角为(60^{circ}),则二面角(B-EC-C_1)的正弦值还为(cfrac{sqrt{3}}{2})

    例16【2020届宝鸡质检1文数第16题】如图所示,三棱锥(P-ABC)中,(PAperp)平面(ABC)(PA=)(AB)(=AC)(=BC)(=2)(E)(PC)的中点,求异面直线(AE)(PB)所成角的余弦值___________。

    法1:理科学生可以使用建立空间直角坐标系的思路求解;

    法2:平移构造三角形法,取(BC)的中点(F),连接(EF)(AF)

    则由(EF//PB),可知(angle AEF)即为两条异面直线(AE)(PB)所成的角,

    ( riangle AEF)中,容易知道(AE=EF=sqrt{2})(AF=sqrt{3})

    由余弦定理可知,(cosangle AEF=cfrac{1}{4})

    • 上次编辑时间:2019-07-22
  • 相关阅读:
    每日日报2020.12.1
    每日日报2020.11.30
    981. Time Based Key-Value Store
    1146. Snapshot Array
    565. Array Nesting
    79. Word Search
    43. Multiply Strings
    Largest value of the expression
    1014. Best Sightseeing Pair
    562. Longest Line of Consecutive One in Matrix
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/8028297.html
Copyright © 2011-2022 走看看