zoukankan      html  css  js  c++  java
  • 10-排序6 Sort with Swap(0, i) (25 分)

    Given any permutation of the numbers {0, 1, 2,..., N1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:

    Swap(0, 1) => {4, 1, 2, 0, 3}
    Swap(0, 3) => {4, 1, 2, 3, 0}
    Swap(0, 4) => {0, 1, 2, 3, 4}
    

    Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.

    Input Specification:

    Each input file contains one test case, which gives a positive N (≤) followed by a permutation sequence of {0, 1, ..., N1}. All the numbers in a line are separated by a space.

    Output Specification:

    For each case, simply print in a line the minimum number of swaps need to sort the given permutation.

    Sample Input:

    10
    3 5 7 2 6 4 9 0 8 1
    

    Sample Output:

    9
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int maxn = 100010;
    
    int arr[maxn];
    
    int main(){
        int n, ans = 0;
        scanf("%d",&n);
        int left = n-1 ,num;
        for(int i = 0; i < n; i++){
            scanf("%d",&num);
            arr[num] = i;
            if(i == num && num != 0){
                left--;
            }
        }
        int k = 1;
        while(left > 0){
            if(arr[0] == 0){
                while(k < n){
                    if(arr[k] != k){
                        swap(arr[0],arr[k]);
                        ans++;
                        break;
                    }
                    k++;
                }
            }
            if(arr[0] != 0){
                swap(arr[0],arr[arr[0]]);
                ans++;
                left--;
            }
        }
        printf("%d",ans);
        return 0;
    } 
  • 相关阅读:
    [CF1483C] Skyline Photo
    [CF1483B] Playlist
    [CF1483A] Basic Diplomacy
    [CF1329C] Drazil Likes Heap
    [CF1329B] Dreamoon Likes Sequences
    [CF1329A] Dreamoon Likes Coloring
    [CF96E] Horse Races
    [ICPC2020济南J] Tree Constructer
    [ICPC2020济南L] Bit Sequence
    [ICPC2020济南G] Xor Transformation
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/10946215.html
Copyright © 2011-2022 走看看