zoukankan      html  css  js  c++  java
  • 1007 Maximum Subsequence Sum (25)

    Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A continuous subsequence is defined to be { N~i~, N~i+1~, ..., N~j~ } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 10010;
    int dp[maxn],a[maxn],s[maxn] = {0};
    int main(){
        int n;
        scanf("%d",&n);
        bool flag = false;
        for(int i = 0; i < n; i++){
            scanf("%d",&a[i]);
            if(a[i] >= 0) flag = true;
        }
        if(flag == false) {
            printf("0 %d %d",a[0],a[n-1]);
            return 0;
        }
        
        dp[0] = a[0];
        for(int i = 1; i < n; i++){
            if(dp[i-1] + a[i] > a[i]){
                dp[i] = dp[i - 1] + a[i];
                s[i] = s[i-1];
            }else{
                dp[i] = a[i];
                s[i] = i;
            }
        }
        int k = 0;
        for(int i = 1; i < n; i++){
            if(dp[i] > dp[k]){
                k = i;            
            }
        }
        printf("%d %d %d",dp[k],a[s[k]],a[k]);
        return 0;
    }
  • 相关阅读:
    【题解】JSOI2009游戏
    【考试记录】4.8 Path (网络流 —— 劲题)
    【考试记录】4.8 Table ( 数论数学 --组合数 & 杨辉三角)
    【题解】HNOI2016树
    【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)
    【加油!】
    [bzoj4916] 神犇和蒟蒻 [杜教筛]
    [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
    [luogu3768] 简单的数学题 [杜教筛]
    春季学习记录
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/9358832.html
Copyright © 2011-2022 走看看