zoukankan      html  css  js  c++  java
  • 1057 Stack (30)

    Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With N elements, the median value is defined to be the (N/2)-th smallest element if N is even, or ((N+1)/2)-th if N is odd.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<= 10^5^). Then N lines follow, each contains a command in one of the following 3 formats:

    Push key Pop PeekMedian

    where key is a positive integer no more than 10^5^.

    Output Specification:

    For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print "Invalid" instead.

    Sample Input:

    17
    Pop
    PeekMedian
    Push 3
    PeekMedian
    Push 2
    PeekMedian
    Push 1
    PeekMedian
    Pop
    Pop
    Push 5
    Push 4
    PeekMedian
    Pop
    Pop
    Pop
    Pop
    

    Sample Output:

    Invalid
    Invalid
    3
    2
    2
    1
    2
    4
    4
    5
    3
    Invalid
    #include<cstdio>
    #include<stack>
    #include<cstring>
    using namespace std;
    const int maxn = 100010;
    const int sqrN = 351;
    
    stack<int> st;
    int block[maxn],table[maxn];
    
    void peekMedian(int k){
        int sum = 0;
        int idx = 0;
        while(sum + block[idx] < k){
            sum += block[idx++];
        }
        int num = idx * sqrN;
        while(sum + table[num] < k){
            sum += table[num++];
        }
        printf("%d
    ",num);
    }
    
    void Push(int x){
        st.push(x);
        block[x/sqrN]++;
        table[x]++;
    }
    void Pop(){
        int t = st.top();
        st.pop();
        block[t/sqrN]--;
        table[t]--;
        printf("%d
    ",t);
    }
    
    int main(){
        int n,x;
        memset(block,0,sizeof(block));
        memset(table,0,sizeof(table));
        scanf("%d",&n);
        char cmd[20];
        for(int i = 0; i < n; i++){
            scanf("%s",cmd);
            if(strcmp(cmd,"Push") == 0){
                scanf("%d",&x);
                Push(x);
            }else if(strcmp(cmd,"Pop") == 0){
                if(st.empty() == true){
                    printf("Invalid
    ");
                }else{
                    Pop();
                }
            }else{
                if(st.empty() == true){
                    printf("Invalid
    ");
                }else{
                    int k = st.size();
                    if(k % 2 == 0) k = k/2;
                    else k = (k+1)/2;
                    peekMedian(k);
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    系统操作日志设计代码实现
    SQL SERVER 存储过程复习
    IGrab信息采集系统流程图(初稿)
    收藏几段SQL语句和存储过程
    SQL Server联机丛书:存储过程及其创建
    使用dynamic来简化反射实现,并且提高了性能
    你必须知道的C#的25个基础概念(附演示)
    弹窗插件
    dede 搜索时出现“SphinxClient类找不到”解决
    开启includes模块运行shtml
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/9429820.html
Copyright © 2011-2022 走看看