For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (.
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<cstdio> #include<algorithm> using namespace std; bool cmp(int a,int b){ return a> b; } void to_array(int num[],int n){ for(int i = 0 ; i < 4; i++){ num[i] = n % 10; n /= 10; } } int to_number(int num[]){ int sum = 0; for(int i = 0 ; i < 4; i++){ sum = sum * 10 + num[i]; } return sum; } int main(){ int n; scanf("%d",&n); int num[5]; while(1){ to_array(num,n); sort(num,num+4); int min = to_number(num); sort(num,num+4,cmp); int max = to_number(num); n = max - min; printf("%04d - %04d = %04d ",max,min,n); if(n == 0 || n == 6174) break; } return 0; }