zoukankan      html  css  js  c++  java
  • 1081 Rational Sum(20 分)

    Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum.

    Input Specification:

    Each input file contains one test case. Each case starts with a positive integer N (≤), followed in the next line N rational numbers a1/b1 a2/b2 ... where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.

    Output Specification:

    For each test case, output the sum in the simplest form integer numerator/denominator where integer is the integer part of the sum, numerator denominator, and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.

    Sample Input 1:

    5
    2/5 4/15 1/30 -2/60 8/3
    

    Sample Output 1:

    3 1/3
    

    Sample Input 2:

    2
    4/3 2/3
    

    Sample Output 2:

    2
    

    Sample Input 3:

    3
    1/3 -1/6 1/8
    

    Sample Output 3:

    7/24
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    struct Fraction{
        ll up,dowm;
    };
    
    ll gcd(ll a,ll b){
        return b == 0 ? a : gcd(b,a%b);
    }
    
    Fraction reduction(Fraction result){
        if(result.dowm < 0){
            result.up = - result.up;
            result.dowm = - result.dowm;
        }
        if(result.up == 0){
            result.dowm = 1;
        }else{
            int d = gcd(abs(result.dowm),result.up);
            result.dowm /= d;
            result.up /= d;
        }
        return result;
    }
    
    Fraction add(Fraction f1,Fraction f2){
        Fraction result;
        result.up = f1.dowm*f2.up + f2.dowm*f1.up;
        result.dowm = f1.dowm*f2.dowm;
        return reduction(result);
    }
    
    void showResult(Fraction r){
        reduction(r);
        if(r.dowm == 1) printf("%lld",r.up);
        else if(abs(r.up) > abs(r.dowm)){
            printf("%lld %lld/%lld",r.up/r.dowm,r.up%r.dowm,r.dowm);
        }else{
            printf("%lld/%lld",r.up,r.dowm);
        }
    }
    
    int main(){
        int n;
        scanf("%d",&n);
        Fraction sum,temp;
        sum.up = 0, sum.dowm = 1;
        for(int i = 0; i < n; i++){
            scanf("%lld/%lld",&temp.up,&temp.dowm);
            sum = add(sum,temp);
        }
        showResult(sum);
        return 0;
    }
  • 相关阅读:
    第十二章学习笔记
    UVa OJ 107 The Cat in the Hat (戴帽子的猫)
    UVa OJ 123 Searching Quickly (快速查找)
    UVa OJ 119 Greedy Gift Givers (贪婪的送礼者)
    UVa OJ 113 Power of Cryptography (密文的乘方)
    UVa OJ 112 Tree Summing (树的求和)
    UVa OJ 641 Do the Untwist (解密工作)
    UVa OJ 105 The Skyline Problem (地平线问题)
    UVa OJ 100 The 3n + 1 problem (3n + 1问题)
    UVa OJ 121 Pipe Fitters (装管子)
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/9563981.html
Copyright © 2011-2022 走看看