zoukankan      html  css  js  c++  java
  • 进程池

    注意问题

    1并发执行的任务通常远大于核数

    2一个操作系统不能无限的开启进程,通常有几个核就开启几个进程

    3进程开启太多,效率反而下降

    创建进程池类:如果指定的numprocess为几个,那么进程就从无到有创建几个,然后自始至终都用这几个进程执行完所有的任务,不会再开启其他的进程

    1 Pool([numprocess  [,initializer [, initargs]]]):创建进程池 

        参数介绍:

    1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
    2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
    3 initargs:是要传给initializer的参数组

      方法介绍:

        主要方法:
    p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()
    p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。  
    p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
    P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用 

       其他方法(了解部分)

    方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
    obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
    obj.ready():如果调用完成,返回True
    obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
    obj.wait([timeout]):等待结果变为可用。
    obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数

         应用:apply同步执行:阻塞式

    from multiprocessing import Pool
    import time,os
    def work(n):
        print('%s run'%os.getpid())
        time.sleep(3)
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3)
        res_l=[]
        for i in range(10):
            res=p.apply(work,args=(i,))
            res_l.append(res)
        print(res_l)
    from multiprocessing import Pool
    import os,time
    def work(n):
        print('%s run' %os.getpid())
        time.sleep(3)
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
        res_l=[]
        for i in range(10):
            res=p.apply_async(work,args=(i,)) #同步运行,阻塞、直到本次任务执行完毕拿到res
            res_l.append(res)
    
        #异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
        p.close()
        p.join()
        for res in res_l:
            print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
    apply_async异步执行:非阻塞
    
    


    详解:apply_async与apply

    #一:使用进程池(非阻塞,apply_async)
    #coding: utf-8
    from multiprocessing import Process,Pool
    import time
    
    def func(msg):
        print( "msg:", msg)
        time.sleep(1)
        return msg
    
    if __name__ == "__main__":
        pool = Pool(processes = 3)
        res_l=[]
        for i in range(10):
            msg = "hello %d" %(i)
            res=pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
            res_l.append(res)
        print("==============================>") #没有后面的join,或get,则程序整体结束,进程池中的任务还没来得及全部执行完也都跟着主进程一起结束了
    
        pool.close() #关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
        pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    
        print(res_l) #看到的是<multiprocessing.pool.ApplyResult object at 0x10357c4e0>对象组成的列表,而非最终的结果,但这一步是在join后执行的,证明结果已经计算完毕,剩下的事情就是调用每个对象下的get方法去获取结果
        for i in res_l:
            print(i.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
    
    #二:使用进程池(阻塞,apply)
    #coding: utf-8
    from multiprocessing import Process,Pool
    import time
    
    def func(msg):
        print( "msg:", msg)
        time.sleep(0.1)
        return msg
    
    if __name__ == "__main__":
        pool = Pool(processes = 3)
        res_l=[]
        for i in range(10):
            msg = "hello %d" %(i)
            res=pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
            res_l.append(res) #同步执行,即执行完一个拿到结果,再去执行另外一个
        print("==============================>")
        pool.close()
        pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    
        print(res_l) #看到的就是最终的结果组成的列表
        for i in res_l: #apply是同步的,所以直接得到结果,没有get()方法
            print(i)

    使用进程池维护固定数目的进程

    #Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
    #开启6个客户端,会发现2个客户端处于等待状态
    #在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
    from socket import *
    from multiprocessing import Pool
    import os
    
    server=socket(AF_INET,SOCK_STREAM)
    server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    server.bind(('127.0.0.1',8080))
    server.listen(5)
    
    def talk(conn,client_addr):
        print('进程pid: %s' %os.getpid())
        while True:
            try:
                msg=conn.recv(1024)
                if not msg:break
                conn.send(msg.upper())
            except Exception:
                break
    
    if __name__ == '__main__':
        p=Pool()
        while True:
            conn,client_addr=server.accept()
            p.apply_async(talk,args=(conn,client_addr))
            # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问
    server端
    from socket import *
    
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(('127.0.0.1',8080))
    
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        client.send(msg.encode('utf-8'))
        msg=client.recv(1024)
        print(msg.decode('utf-8'))
    
    客户端
    客户端
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
  • 相关阅读:
    RegExp
    svn操作
    前端跨域请求
    UML
    excel 常用设置
    python中 cmp
    python global nonlocal
    python常见异常提示
    table边框和td的width失效
    display_css
  • 原文地址:https://www.cnblogs.com/wanghaohao/p/7444796.html
Copyright © 2011-2022 走看看