zoukankan      html  css  js  c++  java
  • tensorflow入门:Logistic Regression

    sigmoid函数

    g ( z ) = 1 1 + e − z g(z) = frac{1}{1+e^{-z}} g(z)=1+ez1
    在这里插入图片描述
    logistic使用sigmoid函数作为hypothesis,因为其值落于0和1之间,因此选定一个阀值就可以进行二元分类,这是机器学习的入门部分,理论不再赘述。

    损失函数

    我们这里使用交叉熵(cross-entroy)来作为logistic regerssion的损失函数。

    交叉熵计算公式为:
    c o s t ( W , b ) = ∑ i = 1 m y l o g ( h ( x ) ) cost(W,b)=sum_{i=1}^{m}ylog(h(x)) cost(W,b)=i=1mylog(h(x))

    我们这里使用的交叉熵包含两部分是因为 y = 1 y=1 y=1 y = 0 y=0 y=0两种情况对应了两个计算方法。
    在这里插入图片描述

    实现

    tensorflow实现如下, 我给每一个部分加了详细且准确的注释:

    import tensorflow as tf
    
    # traing data
    x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]]
    y_data = [[0], [0], [0], [1], [1], [1]]
    
    # placeholder for a tensor that will be fed at the traing phase
    X = tf.placeholder(tf.float32, shape=[None, 2])
    Y = tf.placeholder(tf.float32, shape=[None, 1])
    
    # define hyperparameter
    W = tf.Variable(tf.random_normal([2, 1]), name="weight")
    b = tf.Variable(tf.random_normal([1]), name="bias")
    
    # sigmoid hypothesis: tf.div(1., 1. + tf.exp(tf.matmul(X, W) + b))
    hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
    
    # loss function: cross entropy loss function
    cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
    
    train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
    
    # if hypothesis > 0.5 1.(True) else 0.(False) 
    # therefore logistic regression is often used in binary classificaition
    predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
    
    # compute accuracy
    accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted,Y), dtype=tf.float32))
    
    # Start session
    with tf.Session() as sess:
        # initialize global variable
        sess.run(tf.global_variables_initializer())
        
        for step in range(10001):
            cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
            if step % 200 == 0:
                print(step, cost_val)
                
        # accuracy
        h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data})
        print("
    Hypothesis:
    ", h, "
    Correct:
    ", c, "
    Accuracy:
    ", a)
    
    
    0 0.6799795
    200 0.6385348
    400 0.61319155
    600 0.58977795
    800 0.5677751
    1000 0.5469113
    1200 0.527039
    1400 0.508074
    1600 0.48996434
    1800 0.47267392
    2000 0.456174
    2200 0.44043824
    2400 0.4254409
    2600 0.4111558
    2800 0.39755583
    3000 0.38461265
    3200 0.3722982
    3400 0.36058354
    3600 0.34944
    3800 0.33883914
    4000 0.32875317
    4200 0.31915486
    4400 0.3100181
    4600 0.3013176
    4800 0.29302916
    5000 0.28512976
    5200 0.27759746
    5400 0.27041152
    5600 0.26355234
    5800 0.25700125
    6000 0.2507409
    6200 0.24475472
    6400 0.23902722
    6600 0.233544
    6800 0.2282914
    7000 0.22325666
    7200 0.21842766
    7400 0.21379335
    7600 0.20934318
    7800 0.20506714
    8000 0.20095605
    8200 0.1970012
    8400 0.19319443
    8600 0.18952823
    8800 0.1859952
    9000 0.18258892
    9200 0.17930289
    9400 0.1761312
    9600 0.17306834
    9800 0.17010897
    10000 0.16724814
    
    Hypothesis:
     [[0.03854486]
     [0.16824016]
     [0.3402725 ]
     [0.76564145]
     [0.9292265 ]
     [0.97676086]] 
    Correct:
     [[0.]
     [0.]
     [0.]
     [1.]
     [1.]
     [1.]] 
    Accuracy:
     1.0
    

    因为是个很简单的例子,损失函数一直在下降,准确度是1。

  • 相关阅读:
    JDBC第一部分
    java mysql学习第三部分
    java mysql 第六部分
    java mysql学习第五部分
    java mysql学习第二部分
    java mysql学习第一部分
    元注解
    改良之前写的模拟栈代码
    java中如何自定义异常
    java中的语法规则
  • 原文地址:https://www.cnblogs.com/wanghongze95/p/13842487.html
Copyright © 2011-2022 走看看