zoukankan      html  css  js  c++  java
  • 卷积神经网络 第一周作业 Convolution+model+-+Application+-+v1

    来自吴恩达深度学习系列视频,卷积神经网络 第一周作业 Convolution+model±+Application±+v1
    如果英文对你来说有困难,请参照:【中文】【吴恩达课后编程作业】Course 4 - 卷积神经网络 - 第一周作业 - 搭建卷积神经网络模型以及应用(1&2) 参照对代码的解释并不完全正确 请注意这点

    在本次作业中,你会在forward_propagation那部分遇到代码完全正确,但是结果和作业提供的答案不一致,这是由于tensorflow版本不一致,继续往下计算出的cost也不一样,但是通过注释了模型里的一行代码:
    # seed = seed + 1 #Change made by Steve Wang 博主做的改动
    最终模型的准确度会高于旧版本。

    完整版ipynb文件见博主github:
    https://github.com/Hongze-Wang/Deep-Learning-Andrew-Ng/tree/master/homework

    Convolutional Neural Networks: Application

    Welcome to Course 4’s second assignment! In this notebook, you will:

    • Implement helper functions that you will use when implementing a TensorFlow model
    • Implement a fully functioning ConvNet using TensorFlow

    After this assignment you will be able to:

    • Build and train a ConvNet in TensorFlow for a classification problem

    We assume here that you are already familiar with TensorFlow. If you are not, please refer the TensorFlow Tutorial of the third week of Course 2 (“Improving deep neural networks”).

    1.0 - TensorFlow model

    In the previous assignment, you built helper functions using numpy to understand the mechanics behind convolutional neural networks. Most practical applications of deep learning today are built using programming frameworks, which have many built-in functions you can simply call.

    As usual, we will start by loading in the packages.

    import math
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import scipy
    from PIL import Image
    from scipy import ndimage
    import tensorflow as tf
    from tensorflow.python.framework import ops
    from cnn_utils import *
    
    %matplotlib inline
    np.random.seed(1)
    

    Run the next cell to load the “SIGNS” dataset you are going to use.

    # Loading the data (signs)
    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    

    As a reminder, the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.

    在这里插入图片描述

    The next cell will show you an example of a labelled image in the dataset. Feel free to change the value of index below and re-run to see different examples.

    # Example of a picture
    index = 6
    plt.imshow(X_train_orig[index])
    print ("y = " + str(np.squeeze(Y_train_orig[:, index])))
    

    y = 2
    在这里插入图片描述
    In Course 2, you had built a fully-connected network for this dataset. But since this is an image dataset, it is more natural to apply a ConvNet to it.

    To get started, let’s examine the shapes of your data.

     """
    def convert_to_one_hot(Y, C):
        Y = np.eye(C)[Y.reshape(-1)].T
        return Y
    """
    
    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    conv_layers = {}
    
    number of training examples = 1080
    number of test examples = 120
    X_train shape: (1080, 64, 64, 3)
    Y_train shape: (1080, 6)
    X_test shape: (120, 64, 64, 3)
    Y_test shape: (120, 6)
    

    1.1 - Create placeholders

    TensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.

    Exercise: Implement the function below to create placeholders for the input image X and the output Y. You should not define the number of training examples for the moment. To do so, you could use “None” as the batch size, it will give you the flexibility to choose it later. Hence X should be of dimension [None, n_H0, n_W0, n_C0] and Y should be of dimension [None, n_y]. Hint.

    # GRADED FUNCTION: create_placeholders
    
    def create_placeholders(n_H0, n_W0, n_C0, n_y):
        """
        Creates the placeholders for the tensorflow session.
        
        Arguments:
        n_H0 -- scalar, height of an input image
        n_W0 -- scalar, width of an input image
        n_C0 -- scalar, number of channels of the input
        n_y -- scalar, number of classes
            
        Returns:
        X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
        Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
        """
    
        ### START CODE HERE ### (≈2 lines)
        X = tf.placeholder(tf.float32, [None, n_H0, n_W0, n_C0])
        Y = tf.placeholder(tf.float32, [None, n_y])
        ### END CODE HERE ###
        
        return X, Y
    
    X, Y = create_placeholders(64, 64, 3, 6)
    print ("X = " + str(X))
    print ("Y = " + str(Y))
    
    X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)
    Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)
    

    1.2 - Initialize parameters

    You will initialize weights/filters W 1 W1 W1 and W 2 W2 W2 using tf.contrib.layers.xavier_initializer(seed = 0). You don’t need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias. Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.

    Exercise: Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter W W W of shape [1,2,3,4] in Tensorflow, use:

    W = tf.get_variable("W", [1,2,3,4], initializer = ...)
    

    More Info.

    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters():
        """
        Initializes weight parameters to build a neural network with tensorflow. The shapes are:
                            W1 : [4, 4, 3, 8]
                            W2 : [2, 2, 8, 16]
        Returns:
        parameters -- a dictionary of tensors containing W1, W2
        """
        
        tf.set_random_seed(1)                              # so that your "random" numbers match ours
            
        ### START CODE HERE ### (approx. 2 lines of code)
        W1 = tf.get_variable("W1", [4, 4, 3, 8], initializer=tf.contrib.layers.xavier_initializer(seed=0))
        W2 = tf.get_variable("W2", [2, 2, 8, 16], initializer=tf.contrib.layers.xavier_initializer(seed=0))
        ### END CODE HERE ###
    
        parameters = {"W1": W1,
                      "W2": W2}
        
        return parameters
    
    tf.reset_default_graph()
    with tf.Session() as sess_test:
        parameters = initialize_parameters()
        init = tf.global_variables_initializer()
        sess_test.run(init)
        print("W1 = " + str(parameters["W1"].eval()[1,1,1]))
        print("W2 = " + str(parameters["W2"].eval()[1,1,1]))
    
    W1 = [ 0.00131723  0.1417614  -0.04434952  0.09197326  0.14984085 -0.03514394
     -0.06847463  0.05245192]
    W2 = [-0.08566415  0.17750949  0.11974221  0.16773748 -0.0830943  -0.08058
     -0.00577033 -0.14643836  0.24162132 -0.05857408 -0.19055021  0.1345228
     -0.22779644 -0.1601823  -0.16117483 -0.10286498]
    

    1.2 - Forward propagation

    In TensorFlow, there are built-in functions that carry out the convolution steps for you.

    • tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = ‘SAME’): given an input X X X and a group of filters W 1 W1 W1, this function convolves W 1 W1 W1's filters on X. The third input ([1,f,f,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). You can read the full documentation here

    • tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = ‘SAME’): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. You can read the full documentation here

    • tf.nn.relu(Z1): computes the elementwise ReLU of Z1 (which can be any shape). You can read the full documentation here.

    • tf.contrib.layers.flatten§: given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k]. You can read the full documentation here.

    • tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation here.

    In the last function above (tf.contrib.layers.fully_connected), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters.

    Exercise:

    Implement the forward_propagation function below to build the following model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED. You should use the functions above.

    In detail, we will use the following parameters for all the steps:
    - Conv2D: stride 1, padding is “SAME”
    - ReLU
    - Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is “SAME”
    - Conv2D: stride 1, padding is “SAME”
    - ReLU
    - Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is “SAME”
    - Flatten the previous output.
    - FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you’ll call in a different function when computing the cost.

    
    ```python
    # GRADED FUNCTION: forward_propagation
    
    def forward_propagation(X, parameters):
        """
        Implements the forward propagation for the model:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X -- input dataset placeholder, of shape (input size, number of examples)
        parameters -- python dictionary containing your parameters "W1", "W2"
                      the shapes are given in initialize_parameters
    
        Returns:
        Z3 -- the output of the last LINEAR unit
        """
        
        # Retrieve the parameters from the dictionary "parameters" 
        W1 = parameters['W1']
        W2 = parameters['W2']
        
        ### START CODE HERE ###
        # CONV2D: stride of 1, padding 'SAME'
        Z1 = tf.nn.conv2d(X, W1, strides=(1, 1, 1, 1), padding='SAME')
        # RELU
        
        A1 = tf.nn.relu(Z1)
        # MAXPOOL: window 8x8, sride 8, padding 'SAME'
        P1 = tf.nn.max_pool(A1, ksize=(1, 8, 8, 1), strides=(1, 8, 8, 1), padding='SAME')
        # CONV2D: filters W2, stride 1, padding 'SAME'
        Z2 = tf.nn.conv2d(P1, W2, strides=(1, 1, 1, 1), padding='SAME')
        # RELU
        A2 = tf.nn.relu(Z2)
        # MAXPOOL: window 4x4, stride 4, padding 'SAME'
        P2 = tf.nn.max_pool(A2, ksize=(1, 4, 4, 1), strides=(1, 4, 4, 1), padding='SAME')
        # FLATTEN
        F = tf.contrib.layers.flatten(P2)
        # FULLY-CONNECTED without non-linear activation function (not not call softmax).
        # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
        Z3 = tf.contrib.layers.fully_connected(F, 6, activation_fn=None)
        ### END CODE HERE ###
    
        return Z3
    
    tf.reset_default_graph()
    
    with tf.Session() as sess:
        np.random.seed(1)
        X, Y = create_placeholders(64, 64, 3, 6)
        parameters = initialize_parameters()
        Z3 = forward_propagation(X, parameters)
        init = tf.global_variables_initializer()
        sess.run(init)
        a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
        print("Z3 = " + str(a))
    
    Z3 = [[ 1.4416984  -0.24909666  5.450499   -0.2618962  -0.20669907  1.3654671 ]
     [ 1.4070846  -0.02573211  5.08928    -0.48669922 -0.40940708  1.2624859 ]]
    

    在这里插入图片描述
    注意从这里开始与预期的输出不一致,是tensorflow的版本不一致造成的,你的结果和我一样表示你的代码并没有问题。

    1.3 - Compute cost

    Implement the compute cost function below. You might find these two functions helpful:

    • tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y): computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss. You can check the full documentation here.
    • tf.reduce_mean: computes the mean of elements across dimensions of a tensor. Use this to sum the losses over all the examples to get the overall cost. You can check the full documentation here.

    ** Exercise**: Compute the cost below using the function above.

    # GRADED FUNCTION: compute_cost 
    
    def compute_cost(Z3, Y):
        """
        Computes the cost
        
        Arguments:
        Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
        Y -- "true" labels vector placeholder, same shape as Z3
        
        Returns:
        cost - Tensor of the cost function
        """
        
        ### START CODE HERE ### (1 line of code)
        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=Z3, labels=Y))
        ### END CODE HERE ###
        
        return cost
    
    tf.reset_default_graph()
    
    with tf.Session() as sess:
        np.random.seed(1)
        X, Y = create_placeholders(64, 64, 3, 6)
        parameters = initialize_parameters()
        Z3 = forward_propagation(X, parameters)
        cost = compute_cost(Z3, Y)
        init = tf.global_variables_initializer()
        sess.run(init)
        a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})
        print("cost = " + str(a))
    
    cost = 4.6648693
    

    1.4 Model

    Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset.

    You have implemented random_mini_batches() in the Optimization programming assignment of course 2. Remember that this function returns a list of mini-batches.

    Exercise: Complete the function below.

    The model below should:

    • create placeholders
    • initialize parameters
    • forward propagate
    • compute the cost
    • create an optimizer

    Finally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. Hint for initializing the variables

    # GRADED FUNCTION: model
    
    def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
              num_epochs = 100, minibatch_size = 64, print_cost = True):
        """
        Implements a three-layer ConvNet in Tensorflow:
        CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
        
        Arguments:
        X_train -- training set, of shape (None, 64, 64, 3)
        Y_train -- test set, of shape (None, n_y = 6)
        X_test -- training set, of shape (None, 64, 64, 3)
        Y_test -- test set, of shape (None, n_y = 6)
        learning_rate -- learning rate of the optimization
        num_epochs -- number of epochs of the optimization loop
        minibatch_size -- size of a minibatch
        print_cost -- True to print the cost every 100 epochs
        
        Returns:
        train_accuracy -- real number, accuracy on the train set (X_train)
        test_accuracy -- real number, testing accuracy on the test set (X_test)
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        
        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
        tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
        seed = 3                                          # to keep results consistent (numpy seed)
        (m, n_H0, n_W0, n_C0) = X_train.shape             
        n_y = Y_train.shape[1]                            
        costs = []                                        # To keep track of the cost
        
        # Create Placeholders of the correct shape
        ### START CODE HERE ### (1 line)
        X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
        ### END CODE HERE ###
        
        # Initialize parameters
        ### START CODE HERE ### (1 line)
        parameters = initialize_parameters()
        ### END CODE HERE ###
        
        # Forward propagation: Build the forward propagation in the tensorflow graph
        ### START CODE HERE ### (1 line)
        Z3 = forward_propagation(X, parameters)
        ### END CODE HERE ###
        
        # Cost function: Add cost function to tensorflow graph
        ### START CODE HERE ### (1 line)
        cost = compute_cost(Z3, Y)
        ### END CODE HERE ###
        
        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
        ### START CODE HERE ### (1 line)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
        ### END CODE HERE ###
        
        # Initialize all the variables globally
        init = tf.global_variables_initializer()
         
        # Start the session to compute the tensorflow graph
        with tf.Session() as sess:
            
            # Run the initialization
            sess.run(init)
            
            # Do the training loop
            for epoch in range(num_epochs):
    
                minibatch_cost = 0.
                num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
                # seed = seed + 1   #Change made by Steve Wang 博主做的改动
                minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
    
                for minibatch in minibatches:
    
                    # Select a minibatch
                    (minibatch_X, minibatch_Y) = minibatch
                    # IMPORTANT: The line that runs the graph on a minibatch.
                    # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
                    ### START CODE HERE ### (1 line)
                    _ , temp_cost = sess.run([optimizer, cost], feed_dict={X:minibatch_X, Y:minibatch_Y})
                    ### END CODE HERE ###
                    
                    minibatch_cost += temp_cost / num_minibatches
                    
    
                # Print the cost every epoch
                if print_cost == True and epoch % 5 == 0:
                    print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
                if print_cost == True and epoch % 1 == 0:
                    costs.append(minibatch_cost)
            
            
            # plot the cost
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
            # Calculate the correct predictions
            predict_op = tf.argmax(Z3, 1)
            correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
            
            # Calculate accuracy on the test set
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
            print(accuracy)
            train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
            test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
            print("Train Accuracy:", train_accuracy)
            print("Test Accuracy:", test_accuracy)
                    
            return train_accuracy, test_accuracy, parameters
    

    Run the following cell to train your model for 100 epochs. Check if your cost after epoch 0 and 5 matches our output. If not, stop the cell and go back to your code!

    _, _, parameters = model(X_train, Y_train, X_test, Y_test)
    
    Cost after epoch 0: 1.920738
    Cost after epoch 5: 1.882676
    Cost after epoch 10: 1.668813
    Cost after epoch 15: 1.473285
    Cost after epoch 20: 1.210640
    Cost after epoch 25: 0.865555
    Cost after epoch 30: 0.705989
    Cost after epoch 35: 0.601506
    Cost after epoch 40: 0.516260
    Cost after epoch 45: 0.456525
    Cost after epoch 50: 0.409384
    Cost after epoch 55: 0.398814
    Cost after epoch 60: 0.372631
    Cost after epoch 65: 0.338126
    Cost after epoch 70: 0.308678
    Cost after epoch 75: 0.302118
    Cost after epoch 80: 0.321490
    Cost after epoch 85: 0.356276
    Cost after epoch 90: 0.291327
    Cost after epoch 95: 0.253908
    

    在这里插入图片描述

    Tensor("Mean_1:0", shape=(), dtype=float32)
    Train Accuracy: 0.93796295
    Test Accuracy: 0.825    # dismatch the expexted output but better
    
    fname = "images/thumbs_up.jpg"
    image = np.array(ndimage.imread(fname, flatten=False))
    my_image = scipy.misc.imresize(image, size=(64,64))
    plt.imshow(my_image)
    
    C:UserswanghAnaconda3envs	ensorflowlibsite-packagesipykernel_launcher.py:2: DeprecationWarning: `imread` is deprecated!
    `imread` is deprecated in SciPy 1.0.0.
    Use ``matplotlib.pyplot.imread`` instead.
      
    C:UserswanghAnaconda3envs	ensorflowlibsite-packagesipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
    `imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
    Use ``skimage.transform.resize`` instead.
      This is separate from the ipykernel package so we can avoid doing imports until
    

    在这里插入图片描述

  • 相关阅读:
    视图与URL配置--Hello world
    初始Django
    Django 学习之前提
    MySQL--解决中文乱码
    第二课时之c#语言基础
    第一课时之c#程序设计概述
    hdu--1029--思维题
    hdu--1028--dp||递推||母函数
    hdu--1026--bfs&&优先队列&&打印路径
    hdu--1027-next_permutation||dfs
  • 原文地址:https://www.cnblogs.com/wanghongze95/p/13842513.html
Copyright © 2011-2022 走看看