zoukankan      html  css  js  c++  java
  • 吴恩达课后作业学习1-week4-homework-two-hidden-layer -1

    参考:https://blog.csdn.net/u013733326/article/details/79767169

    希望大家直接到上面的网址去查看代码,下面是本人的笔记

    两层神经网络,和吴恩达课后作业学习1-week3-homework-one-hidden-layer——不发布不同之处在于使用的函数不同线性->ReLU->线性->sigmod函数,训练的数据也不同,这里训练的是之前吴恩达课后作业学习1-week2-homework-logistic中的数据,判断是否为猫,查看使用两层的效果是否比一层好

    1.准备软件包

    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import testCases #参见资料包,或者在文章底部copy
    from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward #参见资料包
    import lr_utils #参见资料包,或者在文章底部copy

    为了和作者的数据匹配,需要指定随机种子

    np.random.seed(1)

    2.初始化参数

    模型结构是线性->ReLU->线性->sigmod函数

    def initialize_parameters(n_x,n_h,n_y):
        """
        此函数是为了初始化两层网络参数而使用的函数。
        参数:
            n_x - 输入层节点数量
            n_h - 隐藏层节点数量
            n_y - 输出层节点数量
    
        返回:
            parameters - 包含你的参数的python字典:
                W1 - 权重矩阵,维度为(n_h,n_x)
                b1 - 偏向量,维度为(n_h,1)
                W2 - 权重矩阵,维度为(n_y,n_h)
                b2 - 偏向量,维度为(n_y,1"""
        W1 = np.random.randn(n_h, n_x) * 0.01 #随机初始化参数
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h) * 0.01
        b2 = np.zeros((n_y, 1))
    
        #使用断言确保我的数据格式是正确的
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters  

    测试:

    print("==============测试initialize_parameters==============")
    parameters = initialize_parameters(3,2,1)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

    返回:

    ==============测试initialize_parameters==============
    W1 = [[ 0.01624345 -0.00611756 -0.00528172]
     [-0.01072969  0.00865408 -0.02301539]]
    b1 = [[0.]
     [0.]]
    W2 = [[ 0.01744812 -0.00761207]]
    b2 = [[0.]]

    3.前向传播

    1)线性部分

    def linear_forward(A,W,b):
        """
        实现前向传播的线性部分。
    
        参数:
            A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
            W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
            b - 偏向量,numpy向量,维度为(当前图层节点数量,1)
    
        返回:
             Z - 激活功能的输入,也称为预激活参数
             cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
        """
        Z = np.dot(W,A) + b
        assert(Z.shape == (W.shape[0],A.shape[1]))
        cache = (A,W,b)
    
        return Z,cache

    测试函数linear_forward_test_case():

    def linear_forward_test_case(): #随机生成A,W,b,只有一层
        np.random.seed(1)
        """
        X = np.array([[-1.02387576, 1.12397796],
     [-1.62328545, 0.64667545],
     [-1.74314104, -0.59664964]])
        W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
        b = np.array([[1]])
        """
        A = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        
        return A, W, b

    测试:

    #测试linear_forward
    print("==============测试linear_forward==============")
    A,W,b = testCases.linear_forward_test_case()
    Z,linear_cache = linear_forward(A,W,b)
    print("Z = " + str(Z))
    print(linear_cache

    返回:

    ==============测试linear_forward==============
    Z = [[ 3.26295337 -1.23429987]]
    (array([[ 1.62434536, -0.61175641],
           [-0.52817175, -1.07296862],
           [ 0.86540763, -2.3015387 ]]), array([[ 1.74481176, -0.7612069 ,  0.3190391 ]]), array([[-0.24937038]]))

    2)线性激活部分

    def linear_activation_forward(A_prev,W,b,activation): #activation为指定使用的激活函数
        """
        实现LINEAR-> ACTIVATION 这一层的前向传播
    
        参数:
            A_prev - 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数)
            W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
            b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)
            activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    
        返回:
            A - 激活函数的输出,也称为激活后的值
            cache - 一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递
        """
    
        if activation == "sigmoid":
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = sigmoid(Z)
        elif activation == "relu":
            Z, linear_cache = linear_forward(A_prev, W, b)
            A, activation_cache = relu(Z)
    
        assert(A.shape == (W.shape[0],A_prev.shape[1]))
        cache = (linear_cache,activation_cache)
    
        return A,cache

    测试函数为:

    def linear_activation_forward_test_case(): #单层
        """
        X = np.array([[-1.02387576, 1.12397796],
     [-1.62328545, 0.64667545],
     [-1.74314104, -0.59664964]])
        W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
        b = 5
        """
        np.random.seed(2)
        A_prev = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        return A_prev, W, b

    测试:

    #测试linear_activation_forward
    print("==============测试linear_activation_forward==============")
    A_prev, W,b = testCases.linear_activation_forward_test_case()
    
    #使用sigmoid激活函数
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
    print("sigmoid,A = " + str(A))
    print(linear_activation_cache)
    
    #使用relu激活函数
    A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
    print("ReLU,A = " + str(A))
    print(linear_activation_cache)

    返回:

    ==============测试linear_activation_forward==============
    sigmoid,A = [[0.96890023 0.11013289]]
    ((array([[-0.41675785, -0.05626683],
           [-2.1361961 ,  1.64027081],
           [-1.79343559, -0.84174737]]), array([[ 0.50288142, -1.24528809, -1.05795222]]), array([[-0.90900761]])), array([[ 3.43896131, -2.08938436]]))
    ReLU,A = [[3.43896131 0.        ]]
    ((array([[-0.41675785, -0.05626683],
           [-2.1361961 ,  1.64027081],
           [-1.79343559, -0.84174737]]), array([[ 0.50288142, -1.24528809, -1.05795222]]), array([[-0.90900761]])), array([[ 3.43896131, -2.08938436]]))

    4.计算成本

    def compute_cost(AL,Y):
        """
        实施等式(4)定义的成本函数。
    
        参数:
            AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
            Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
    
        返回:
            cost - 交叉熵成本
        """
        m = Y.shape[1]
        cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
    
        cost = np.squeeze(cost)
        assert(cost.shape == ())
    
        return cost

    测试函数:

    def compute_cost_test_case():
        Y = np.asarray([[1, 1, 1]])
        aL = np.array([[.8,.9,0.4]])
        
        return Y, aL

    测试:

    #测试compute_cost
    print("==============测试compute_cost==============")
    Y,AL = testCases.compute_cost_test_case()
    print("cost = " + str(compute_cost(AL, Y)))

    返回:

    ==============测试compute_cost==============
    cost = 0.414931599615397

    5.反向传播

    其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev

    1)线性部分

     

    根据这三个公式来构建后向传播函数

    def linear_backward(dZ,cache):
        """
        为单层实现反向传播的线性部分(第L层)
    
        参数:
             dZ - 相对于(当前第l层的)线性输出的成本梯度
             cache - 来自当前层前向传播的值的元组(A_prev,W,b)
    
        返回:
             dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
             dW - 相对于W(当前层l)的成本梯度,与W的维度相同
             db - 相对于b(当前层l)的成本梯度,与b维度相同
        """
        A_prev, W, b = cache
        m = A_prev.shape[1]
        dW = np.dot(dZ, A_prev.T) / m
        db = np.sum(dZ, axis=1, keepdims=True) / m
        dA_prev = np.dot(W.T, dZ)
    
        assert (dA_prev.shape == A_prev.shape)
        assert (dW.shape == W.shape)
        assert (db.shape == b.shape)
    
        return dA_prev, dW, db

    测试函数:

    def linear_backward_test_case(): #随机生成前向传播结果用于测试后向
        """
        z, linear_cache = (np.array([[-0.8019545 ,  3.85763489]]), (np.array([[-1.02387576,  1.12397796],
           [-1.62328545,  0.64667545],
           [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), np.array([[1]]))
        """
        np.random.seed(1)
        dZ = np.random.randn(1,2)
        A = np.random.randn(3,2)
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        linear_cache = (A, W, b)
        return dZ, linear_cache

    测试:

    #测试linear_backward
    print("==============测试linear_backward==============")
    dZ, linear_cache = testCases.linear_backward_test_case()
    
    dA_prev, dW, db = linear_backward(dZ, linear_cache)
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

    返回:

    ==============测试linear_backward==============
    dA_prev = [[ 0.51822968 -0.19517421]
     [-0.40506361  0.15255393]
     [ 2.37496825 -0.89445391]]
    dW = [[-0.10076895  1.40685096  1.64992505]]
    db = [[0.50629448]]

    2)线性激活部分

    将线性部分也使用了进来

    在dnn_utils.py中定义了两个现成可用的后向函数,用来帮助计算dz:

    如果 g(.)是激活函数, 那么sigmoid_backward 和 relu_backward 这样计算:

    • sigmoid_backward:实现了sigmoid()函数的反向传播,用来计算dz为:
    dZ = sigmoid_backward(dA, activation_cache)
    • relu_backward: 实现了relu()函数的反向传播,用来计算dz为:
    dZ = relu_backward(dA, activation_cache)

     后向函数为:

    def sigmoid_backward(dA, cache):
        """
        Implement the backward propagation for a single SIGMOID unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
    
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    def relu_backward(dA, cache):
        """
        Implement the backward propagation for a single RELU unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object.
    
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
    
        assert (dZ.shape == Z.shape)
    
        return dZ

    代码为:

    def linear_activation_backward(dA,cache,activation="relu"):
        """
        实现LINEAR-> ACTIVATION层的后向传播。
    
        参数:
             dA - 当前层l的激活后的梯度值
             cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
             activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
        返回:
             dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
             dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
             db - 相对于b(当前层l)的成本梯度值,与b的维度相同
        """
        linear_cache, activation_cache = cache
        #其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
        return dA_prev,dW,db

    测试函数为:

    def linear_activation_backward_test_case():
        """
        aL, linear_activation_cache = (np.array([[ 3.1980455 ,  7.85763489]]), ((np.array([[-1.02387576,  1.12397796], [-1.62328545,  0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), 5), np.array([[ 3.1980455 ,  7.85763489]])))
        """
        np.random.seed(2)
        dA = np.random.randn(1,2) #后向传播的输入
        A = np.random.randn(3,2) #存于cache中用于后向传播计算的值
        W = np.random.randn(1,3)
        b = np.random.randn(1,1)
        Z = np.random.randn(1,2) 
        linear_cache = (A, W, b)
        activation_cache = Z
        linear_activation_cache = (linear_cache, activation_cache)
        
        return dA, linear_activation_cache

    测试:

    #测试linear_activation_backward
    print("==============测试linear_activation_backward==============")
    AL, linear_activation_cache = testCases.linear_activation_backward_test_case()
    
    dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
    print ("sigmoid:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db) + "
    ")
    
    dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
    print ("relu:")
    print ("dA_prev = "+ str(dA_prev))
    print ("dW = " + str(dW))
    print ("db = " + str(db))

    返回:

    ==============测试linear_activation_backward==============
    sigmoid:
    dA_prev = [[ 0.11017994  0.01105339]
     [ 0.09466817  0.00949723]
     [-0.05743092 -0.00576154]]
    dW = [[ 0.10266786  0.09778551 -0.01968084]]
    db = [[-0.05729622]]
    
    relu:
    dA_prev = [[ 0.44090989 -0.        ]
     [ 0.37883606 -0.        ]
     [-0.2298228   0.        ]]
    dW = [[ 0.44513824  0.37371418 -0.10478989]]
    db = [[-0.20837892]]

    6.更新参数

    根据上面后向传播得到的dw,db,dA_prev来更新参数,其中 α 是学习率

    函数:

    def update_parameters(parameters, grads, learning_rate):
        """
        使用梯度下降更新参数
    
        参数:
         parameters - 包含你的参数的字典,即w和b
         grads - 包含梯度值的字典,是L_model_backward的输出
    
        返回:
         parameters - 包含更新参数的字典
                       参数[“W”+ str(l)] = ...
                       参数[“b”+ str(l)] = ...
        """
        L = len(parameters) // 2 #整除2,得到层数
        for l in range(L):
            parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
            parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
    
        return parameters

    测试函数:

    def update_parameters_test_case():
        """
        parameters = {'W1': np.array([[ 1.78862847,  0.43650985,  0.09649747],
            [-1.8634927 , -0.2773882 , -0.35475898],
            [-0.08274148, -0.62700068, -0.04381817],
            [-0.47721803, -1.31386475,  0.88462238]]),
     'W2': np.array([[ 0.88131804,  1.70957306,  0.05003364, -0.40467741],
            [-0.54535995, -1.54647732,  0.98236743, -1.10106763],
            [-1.18504653, -0.2056499 ,  1.48614836,  0.23671627]]),
     'W3': np.array([[-1.02378514, -0.7129932 ,  0.62524497],
            [-0.16051336, -0.76883635, -0.23003072]]),
     'b1': np.array([[ 0.],
            [ 0.],
            [ 0.],
            [ 0.]]),
     'b2': np.array([[ 0.],
            [ 0.],
            [ 0.]]),
     'b3': np.array([[ 0.],
            [ 0.]])}
        grads = {'dW1': np.array([[ 0.63070583,  0.66482653,  0.18308507],
            [ 0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ]]),
     'dW2': np.array([[ 1.62934255,  0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ,  0.        ],
            [ 0.        ,  0.        ,  0.        ,  0.        ]]),
     'dW3': np.array([[-1.40260776,  0.        ,  0.        ]]),
     'da1': np.array([[ 0.70760786,  0.65063504],
            [ 0.17268975,  0.15878569],
            [ 0.03817582,  0.03510211]]),
     'da2': np.array([[ 0.39561478,  0.36376198],
            [ 0.7674101 ,  0.70562233],
            [ 0.0224596 ,  0.02065127],
            [-0.18165561, -0.16702967]]),
     'da3': np.array([[ 0.44888991,  0.41274769],
            [ 0.31261975,  0.28744927],
            [-0.27414557, -0.25207283]]),
     'db1': 0.75937676204411464,
     'db2': 0.86163759922811056,
     'db3': -0.84161956022334572}
        """
        np.random.seed(2)
        W1 = np.random.randn(3,4)
        b1 = np.random.randn(3,1)
        W2 = np.random.randn(1,3)
        b2 = np.random.randn(1,1)
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        np.random.seed(3)
        dW1 = np.random.randn(3,4)
        db1 = np.random.randn(3,1)
        dW2 = np.random.randn(1,3)
        db2 = np.random.randn(1,1)
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
        
        return parameters, grads

    测试:

    #测试update_parameters
    print("==============测试update_parameters==============")
    parameters, grads = testCases.update_parameters_test_case()
    parameters = update_parameters(parameters, grads, 0.1)
    
    print ("W1 = "+ str(parameters["W1"]))
    print ("b1 = "+ str(parameters["b1"]))
    print ("W2 = "+ str(parameters["W2"]))
    print ("b2 = "+ str(parameters["b2"]))

    返回:

    ==============测试update_parameters==============
    W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
     [-1.76569676 -0.80627147  0.51115557 -1.18258802]
     [-1.0535704  -0.86128581  0.68284052  2.20374577]]
    b1 = [[-0.04659241]
     [-1.28888275]
     [ 0.53405496]]
    W2 = [[-0.55569196  0.0354055   1.32964895]]
    b2 = [[-0.84610769]]

    7.整合函数——训练

    开始训练数据并得到最优参数

    def two_layer_model(X,Y,layers_dims,learning_rate=0.0075,num_iterations=3000,print_cost=False,isPlot=True):
        """
        实现一个两层的神经网络,【LINEAR->RELU】 -> 【LINEAR->SIGMOID】
        参数:
            X - 输入的数据,维度为(n_x,例子数)
            Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
            layers_dims - 层数的向量,维度为(n_y,n_h,n_y)
            learning_rate - 学习率
            num_iterations - 迭代的次数
            print_cost - 是否打印成本值,每100次打印一次
            isPlot - 是否绘制出误差值的图谱
        返回:
            parameters - 一个包含W1,b1,W2,b2的字典变量
        """
        np.random.seed(1)
        grads = {}
        costs = []
        (n_x,n_h,n_y) = layers_dims
    
        """
        初始化参数
        """
        parameters = initialize_parameters(n_x, n_h, n_y)
    
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
    
        """
        开始进行迭代
        """
        for i in range(0,num_iterations):
            #前向传播
            A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
            A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
    
            #计算成本
            cost = compute_cost(A2,Y)
    
            #后向传播
            ##初始化后向传播
            dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
    
            ##向后传播,输入:“dA2,cache2,cache1”。 输出:“dA1,dW2,db2;还有dA0(未使用),dW1,db1”。
            dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
            dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
    
            ##向后传播完成后的数据保存到grads
            grads["dW1"] = dW1
            grads["db1"] = db1
            grads["dW2"] = dW2
            grads["db2"] = db2
    
            #更新参数
            parameters = update_parameters(parameters,grads,learning_rate)
            W1 = parameters["W1"]
            b1 = parameters["b1"]
            W2 = parameters["W2"]
            b2 = parameters["b2"]
    
            #打印成本值,如果print_cost=False则忽略
            if i % 100 == 0:
                #记录成本
                costs.append(cost)
                #是否打印成本值
                if print_cost:
                    print("", i ,"次迭代,成本值为:" ,np.squeeze(cost))
        #迭代完成,根据条件绘制图
        if isPlot:
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
    
        #返回parameters
        return parameters

    我们现在开始加载数据集,图像数据集的处理可以参照吴恩达课后作业学习1-week2-homework-logistic

    train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()
    
    train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
    test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
    
    train_x = train_x_flatten / 255
    train_y = train_set_y
    test_x = test_x_flatten / 255
    test_y = test_set_y

    数据集加载完成,开始正式训练:

    n_x = 12288
    n_h = 7
    n_y = 1
    layers_dims = (n_x,n_h,n_y)
    
    parameters = two_layer_model(train_x, train_set_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True,isPlot=True)

    返回:

    0 次迭代,成本值为: 0.6930497356599891100 次迭代,成本值为: 0.6464320953428849200 次迭代,成本值为: 0.6325140647912678300 次迭代,成本值为: 0.6015024920354665400 次迭代,成本值为: 0.5601966311605748500 次迭代,成本值为: 0.515830477276473600 次迭代,成本值为: 0.47549013139433266700 次迭代,成本值为: 0.4339163151225749800 次迭代,成本值为: 0.40079775362038866900 次迭代,成本值为: 0.35807050113237981000 次迭代,成本值为: 0.339428153836641271100 次迭代,成本值为: 0.305275363619626541200 次迭代,成本值为: 0.27491377282130161300 次迭代,成本值为: 0.24681768210614851400 次迭代,成本值为: 0.198507350374660941500 次迭代,成本值为: 0.174483181125566521600 次迭代,成本值为: 0.170807629780962451700 次迭代,成本值为: 0.113065245621647281800 次迭代,成本值为: 0.096294268459371521900 次迭代,成本值为: 0.083426179597268632000 次迭代,成本值为: 0.074390787043190812100 次迭代,成本值为: 0.066307481322679342200 次迭代,成本值为: 0.059193295010381732300 次迭代,成本值为: 0.053361403485605572400 次迭代,成本值为: 0.048554785628770185

    图示:

    8.预测

    def predict(X, y, parameters):
        """
        该函数用于预测L层神经网络的结果,当然也包含两层
    
        参数:
         X - 测试集
         y - 标签
         parameters - 训练模型得到的最优参数
    
        返回:
         p - 给定数据集X的预测
        """
    
        m = X.shape[1]
        n = len(parameters) // 2 # 神经网络的层数
        p = np.zeros((1,m))
    
        #根据参数前向传播
        probas, caches = L_model_forward(X, parameters)
    
        for i in range(0, probas.shape[1]):
            if probas[0,i] > 0.5:
                p[0,i] = 1
            else:
                p[0,i] = 0
    
        print("准确度为: "  + str(float(np.sum((p == y))/m)))
    
        return p

    预测函数构建好了我们就开始预测,查看训练集和测试集的准确性:

    predictions_train = predict(train_x, train_y, parameters) #训练集
    predictions_test = predict(test_x, test_y, parameters) #测试集

    返回:

    准确度为: 1.0
    准确度为: 0.72

    可见两层的训练效果比单层的logistic回归的效果要好一些

  • 相关阅读:
    java String 转Json报错 java.lang.NoClassDefFoundError: org/apache/commons/lang/exception/NestableRuntim
    Idea 进行断点调试的 快捷键
    spring AOP的使用步骤
    AOP的定义和原理
    SpringBoot入门篇--使用IDEA创建一个SpringBoot项目
    详解CI、CD相关概念
    intellij idea 的全局搜索快捷键方法
    面向对象之工厂模式与构造函数模式的区别
    冒泡排序和快速排序
    java里的数组和list分别在什么情况下使用?
  • 原文地址:https://www.cnblogs.com/wanghui-garcia/p/10599289.html
Copyright © 2011-2022 走看看