zoukankan      html  css  js  c++  java
  • scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html

    一个多元正态随机变量。
    mean关键字指定平均值,cov关键字指定协方差矩阵。
    新版本0.14.0。

    补充:高斯分布

    Gaussian Distribution(Normal Distribution)其图形特点为中间高,两头低,是钟形曲线(bell-shaped curve)。在高斯分布中,以数学期望μ(即mean)表示钟型的中心位置(也即曲线的位置),而标准差(standard deviation)σ表征曲线的离散程度。

    协方差矩阵,参考百度百科:

    协方差矩阵的每个元素是各个向量元素之间的协方差

    协方差矩阵可用来表示多维随机变量的概率密度,从而可通过协方差矩阵达到对多维随机变量的研究

    1)参数:

    • x : 数组,分位数,最后一个x轴标记组件。
    • mean:数组,可选的。分布的均值(默认为0)
    • cov :数组,可选的。分布的协方差矩阵(默认为1)

    可以该multivariate_normal对象可以被调用(作为函数)来固定均值和协方差参数,返回一个“frozen”的多元正态随机变量rv:

    rv = multivariate_normal(mean=None, scale=1)

    冻结对象采用相同的方法,但保持给定的均值和协方差不变。

    2)注意:

    将参数均值mean设为None等价于将均值mean设为零向量。参数cov可以是一个标量,在这种情况下,协方差矩阵是该值的单位乘、协方差矩阵的对角项向量,或者二维数组。

    协方差矩阵cov必须是一个(对称的)正半定矩阵。将cov的行列式和逆分别计算为伪行列式和伪逆,使cov不需要满秩。

    multivariate_normal的概率密度函数是:

    μ是平均值mean,默认为0;∑即cov是协方差矩阵,默认为1;k是x获取值的空间的维度

    3)举例:

    from scipy.stats import multivariate_normal
    x = np.linspace(0, 5, 10, endpoint=False)
    y = multivariate_normal.pdf(x, mean=2.5, cov=0.5);
    x,y

    返回,y得到的值x的值在mean=2.5取值点附近的可能性:

    (array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5]),
     array([0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,
            0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]))

    画图:

    plt.plot(x, y)

    输入分位数x可以是任何形状的数组,只要最后一个轴标记组件。这使得我们可以在二维中显示非各向同性随机变量的冻结pdf,如下:

    补充np.mgrid的用法

    x, y = np.mgrid[-1:1:.01, -1:1:.01]
    pos = np.empty(x.shape + (2,)) #从x.shape=(200,200)变为(200,200,2)
    pos[:, :, 0] = x
    pos[:, :, 1] = y
    #mean=[0.5, -0.2],cov=[[2.0, 0.3], [0.3, 0.5]],声明一个带着指定mean和cov的rv对象
    rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
    #将f(X,Y)=rv.pdf(pos)的值对应到color map的暖色组中寻找(X,Y)对应的点对应的颜色
    plt.contourf(x, y, rv.pdf(pos))

    返回:

    可见使用概率密度函数pdf对数据pos,即(x,y)值进行处理后得到满足设置的mean和cov的值,使其分布满足高斯分布。rv.pdf(pos).shape为(200,200)

    4)可使用方法:

    • pdf(x, mean=None, cov=1) :概率密度函数
    • logpdf(x, mean=None, cov=1) :概率密度函数日志
    • rvs(mean=None, cov=1) :从多元正态分布中随机抽取样本
    • entropy() :计算多元法线的微分熵
  • 相关阅读:
    Selenium2+python自动化6-八种元素元素定位(Firebug和firepath)
    Selenium2+python自动化5-操作浏览器基本方法
    Selenium2+python自动化4-Pycharm使用
    Selenium2+python自动化3-解决pip使用异常
    Selenium2+python自动化2-pip降级selenium3.0
    Selenium2+python自动化1-环境搭建
    由《大宅门》看季宗布的育人之道
    三大线性排序之计数排序
    反转字符串
    out.print和out.write方法
  • 原文地址:https://www.cnblogs.com/wanghui-garcia/p/10763418.html
Copyright © 2011-2022 走看看