zoukankan      html  css  js  c++  java
  • resnet代码分析

    1.

    先导入使用的包,并声明可用的网络和预训练好的模型

    import torch.nn as nn
    import torch.utils.model_zoo as model_zoo
    
    #声明可调用的网络
    __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
               'resnet152']
    
    #用于加载的预训练好的模型
    model_urls = {
        'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
        'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
        'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
        'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
        'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    }

     2.

    定义要使用到的1*1和3*3的卷积层

    #卷积核为3*3,padding=1,stride=1(默认,根据实际传入参数设定),dilation=1,groups=1,bias=False的二维卷积
    def conv3x3(in_planes, out_planes, stride=1):
        """3x3 convolution with padding"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                         padding=1, bias=False)
    
    #卷积核为1*1,padding=1,stride=1(默认,根据实际传入参数设定),dilation=1,groups=1,bias=False的二维卷积
    def conv1x1(in_planes, out_planes, stride=1):
        """1x1 convolution"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

    注意:这里bias设置为False,原因是:

    下面使用了Batch Normalization,而其对隐藏层 Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} 有去均值的操作,所以这里的常数项 b^{[l]}可以消去

    因为Batch Normalization有一个操作	ilde z^{(i)}=gammacdot z^{(i)}_{norm}+eta,所以上面b^{[l]}的数值效果是能由eta所替代的

    因此我们在使用Batch Norm的时候,可以忽略各隐藏层的常数项 b^{[l]} 。

    这样在使用梯度下降算法时,只用对 W^{[l]} , eta^{[l]} gamma^{[l]} 进行迭代更新

    3.

    实现两层的残差块

    比如:

    #这个实现的是两层的残差块,用于resnet18/34
    class BasicBlock(nn.Module):
        expansion = 1
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(BasicBlock, self).__init__()
            self.conv1 = conv3x3(inplanes, planes, stride)
            self.bn1 = nn.BatchNorm2d(planes)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(planes, planes)
            self.bn2 = nn.BatchNorm2d(planes)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            identity = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
    
            if self.downsample is not None: #当连接的维度不同时,使用1*1的卷积核将低维转成高维,然后才能进行相加
                identity = self.downsample(x)
    
            out += identity #实现H(x)=F(x)+x或H(x)=F(x)+Wx
            out = self.relu(out)
    
            return out

    4.实现3层的残差块

    如图:

    #这个实现的是三层的残差块,用于resnet50/101/152
    class Bottleneck(nn.Module):
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(Bottleneck, self).__init__()
            self.conv1 = conv1x1(inplanes, planes)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = conv3x3(planes, planes, stride)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = conv1x1(planes, planes * self.expansion)
            self.bn3 = nn.BatchNorm2d(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            identity = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
    
            out = self.conv3(out)
            out = self.bn3(out)
    
            if self.downsample is not None:
                identity = self.downsample(x) #当连接的维度不同时,使用1*1的卷积核将低维转成高维,然后才能进行相加
    
            out += identity #实现H(x)=F(x)+x或H(x)=F(x)+Wx
            out = self.relu(out)
    
            return out

    5.整个网络实现

    class ResNet(nn.Module):
        #参数block指明残差块是两层或三层,参数layers指明每个卷积层需要的残差块数量,num_classes指明分类数,zero_init_residual是否初始化为0
        def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
            super(ResNet, self).__init__()
            self.inplanes = 64 #一开始先使用64*7*7的卷积核,stride=2, padding=3
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                   bias=False) #3通道的输入RGB图像数据变为64通道的数据
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True) #以上是第一层卷积--1
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) #然后进行最大值池化操作--2
            self.layer1 = self._make_layer(block, 64, layers[0])#下面就是所有的卷积层的设置--3
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) #进行自适应平均池化--4
            self.fc = nn.Linear(512 * block.expansion, num_classes)#全连接层--5
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    #kaiming高斯初始化,目的是使得Conv2d卷积层反向传播的输出的方差都为1
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, nn.BatchNorm2d):
                    #初始化m.weight,即gamma的值为1;m.bias即beta的值为0
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
            # 在每个残差分支中初始化最后一个BN,即BatchNorm2d
            # 以便残差分支以零开始,并且每个残差块的行为类似于一个恒等式。
            # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
            if zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):#Bottleneck的最后一个BN是m.bn3
                        nn.init.constant_(m.bn3.weight, 0)
                    elif isinstance(m, BasicBlock):#BasicBlock的最后一个BN是m.bn2
                        nn.init.constant_(m.bn2.weight, 0)
    
        #实现一层卷积,block参数指定是两层残差块或三层残差块,planes参数为输入的channel数,blocks说明该卷积有几个残差块
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            #即如果该层的输入的channel数inplanes和其输出的channel数planes * block.expansion不同,
            #那要使用1*1的卷积核将输入x低维转成高维,然后才能进行相加
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    conv1x1(self.inplanes, planes * block.expansion, stride),
                    nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            #只有卷积和卷积直接的连接需要低维转高维
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for _ in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
    
            x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
    
            return x

     6.不同层次网络实现

    #18层的resnet
    def resnet18(pretrained=False, **kwargs):
        """Constructs a ResNet-18 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
        if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
            model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        return model
    
    #34层的resnet
    def resnet34(pretrained=False, **kwargs):
        """Constructs a ResNet-34 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
        if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
            model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
        return model
    
    #50层的resnet
    def resnet50(pretrained=False, **kwargs):
        """Constructs a ResNet-50 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
        if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
            model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
        return model
    
    #101层的resnet
    def resnet101(pretrained=False, **kwargs):
        """Constructs a ResNet-101 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
        if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
            model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
        return model
    
    #152层的resnet
    def resnet152(pretrained=False, **kwargs):
        """Constructs a ResNet-152 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
        if pretrained:#是否使用已经训练好的预训练模型,在此基础上继续训练
            model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
        return model
  • 相关阅读:
    一个简单的投票功能
    快速删除.svn文件夹
    屏蔽关键字
    批量过滤POST GET数据
    JS识别ios & 安卓
    HashMap
    GC
    类与类之间的关系
    玩转大数据之Apache Pig如何与Apache Lucene集成
    大话设计模式-简单工厂模式
  • 原文地址:https://www.cnblogs.com/wanghui-garcia/p/10775860.html
Copyright © 2011-2022 走看看