zoukankan      html  css  js  c++  java
  • JavaScript 精度问题以及JavaScript 浮点数陷阱及解决方案

    阅读完本文可以了解到 0.1 + 0.2 为什么等于 0.30000000000000004 以及 JavaScript 中最大安全数是如何来的。

    十进制小数转为二进制小数方法

    拿 173.8125 举例如何将之转化为二进制小数。

    ①. 针对整数部分 173,采取除 2 取余,逆序排列;

    173 / 2 = 86 ... 1
    86 / 2 = 43 ... 0
    43 / 2 = 21 ... 1   ↑
    21 / 2 = 10 ... 1   | 逆序排列
    10 / 2 = 5 ... 0    |
    5 / 2 = 2 ... 1     |
    2 / 2 = 1 ... 0
    1 / 2 = 0 ... 1

    得整数部分的二进制为 10101101

    ②. 针对小数部分 0.8125,采用乘 2 取整,顺序排列;

    0.8125 * 2 = 1.625  |
    0.625 * 2 = 1.25    | 顺序排列
    0.25 * 2 = 0.5      |
    0.5 * 2 = 1         ↓

    得小数部分的二进制为 1101

    ③. 将前面两部的结果相加,结果为 10101101.1101;

    小心,二进制小数丢失了精度!

    根据上面的知识,将十进制小数 0.1 转为二进制:

    0.1 * 2 = 0.2
    0.2 * 2 = 0.4 // 注意这里
    0.4 * 2 = 0.8
    0.8 * 2 = 1.6
    0.6 * 2 = 1.2
    0.2 * 2 = 0.4 // 注意这里,循环开始
    0.4 * 2 = 0.8
    0.8 * 2 = 1.6
    0.6 * 2 = 1.2
    ...

    可以发现有限十进制小数 0.1 却转化成了无限二进制小数 0.00011001100...,可以看到精度在转化过程中丢失了!

    能被转化为有限二进制小数的十进制小数的最后一位必然以 5 结尾(因为只有 0.5 * 2 才能变为整数)。所以十进制中一位小数 0.1 ~ 0.9 当中除了 0.5 之外的值在转化成二进制的过程中都丢失了精度。

    推导 0.1 + 0.2 为何等于 0.30000000000000004

    在 JavaScript 中所有数值都以 IEEE-754 标准的 64 bit 双精度浮点数进行存储的。先来了解下 IEEE-754 标准下的双精度浮点数

    这幅图很关键,可以从图中看到 IEEE-754 标准下双精度浮点数由三部分组成,分别如下:

    • sign(符号): 占 1 bit, 表示正负;
    • exponent(指数): 占 11 bit,表示范围;
    • mantissa(尾数): 占 52 bit,表示精度,多出的末尾如果是 1 需要进位;

      

    注意以上的公式遵循科学计数法的规范,在十进制是为0<M<10,到二进行就是0<M<2。也就是说整数部分只能是1,所以可以被舍去,只保留后面的小数部分。如 4.5 转换成二进制就是 100.1,科学计数法表示是 1.001*2^2,舍去1后 M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以再减去一个中间数 1023,[0,1022]表示为负,[1024,2047] 表示为正。如4.5 的指数E = 1025,尾数M为 001。

    最终的公式变成:

     所以 4.5 最终表示为(M=001、E=1025):

    下面再以 0.1 例解释浮点误差的原因, 0.1 转成二进制表示为 0.0001100110011001100(1100循环),1.100110011001100x2^-4,所以 E=-4+1023=1019;M 舍去首位的1,得到 100110011...。最终就是:

     转化成十进制后为 0.100000000000000005551115123126,因此就出现了浮点误差。

    精度位总共是 53 bit,因为用科学计数法表示,所以首位固定的 1 就没有占用空间。即公式中 (M + 1) 里的 1。另外公式里的 1023 是 2^11 的一半。小于 1023 的用来表示小数,大于 1023 的用来表示整数。

    指数可以控制到 2^1024 - 1,而精度最大只达到 2^53 - 1,两者相比可以得出 JavaScript 实际可以精确表示的数字其实很少。

    0.1 转化为二进制为 0.0001100110011...,用科学计数法表示为 1.100110011... x 2^(-4),根据上述公式,S 为 0(1 bit),E 为 -4 + 1023,对应的二进制为 01111111011(11 bit),M 为 1001100110011001100110011001100110011001100110011010(52 bit,另外注意末尾的进位),0.1 的存储示意图如下:

    同理,0.2 转化为二进制为 0.001100110011...,用科学计数法表示为 1.100110011... x 2^(-3),根据上述公式,E 为 -3 + 1023,对应的二进制为 01111111100M 为 10011001100110011001100110011001100110011001100110100.2 的存储示意图如下:

    0.1 + 0.2 即 2^(-4) x 1.1001100110011001100110011001100110011001100110011010 与 2^(-3) x 1.1001100110011001100110011001100110011001100110011010 之和

    // 计算过程
    0.00011001100110011001100110011001100110011001100110011010
    0.0011001100110011001100110011001100110011001100110011010
    
    // 相加得
    0.01001100110011001100110011001100110011001100110011001110

    0.01001100110011001100110011001100110011001100110011001110 转化为十进制就是 0.30000000000000004。验证完成!

    JavaScript 的最大安全数是如何来的

    根据双精度浮点数的构成,精度位数是 53 bit。安全数的意思是在 -2^53 ~ 2^53 内的整数(不包括边界)与唯一的双精度浮点数互相对应。举个例子比较好理解:

    Math.pow(2, 53) === Math.pow(2, 53) + // true

    Math.pow(2, 53) 竟然与 Math.pow(2, 53) + 1 相等!这是因为 Math.pow(2, 53) + 1 已经超过了尾数的精度限制(53 bit),在这个例子中 Math.pow(2, 53) 和 Math.pow(2, 53) + 1 对应了同一个双精度浮点数。所以 Math.pow(2, 53) 就不是安全数了。

    最大的安全数为 Math.pow(2, 53) - 1,即 9007199254740991

    业务中碰到的精度问题以及解决方案

    了解 JavaScript 精度问题对我们业务有什么帮助呢?举个业务场景:比如有个订单号后端 Java 同学定义的是 long 类型,但是当这个订单号转换成 JavaScript 的 Number 类型时候精度会丢失了,那没有以上知识铺垫那就理解不了精度为什么会丢失。

    为什么 0.1+0.2=0.30000000000000004

    计算步骤为:

    // 0.1 和 0.2 都转化成二进制后再进行运算
    0.00011001100110011001100110011001100110011001100110011010 +
    0.0011001100110011001100110011001100110011001100110011010 =
    0.0100110011001100110011001100110011001100110011001100111
    
    // 转成十进制正好是 0.30000000000000004

    为什么 x=0.1 能得到 0.1

    恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992,对应科学计数尾数是 9.007199254740992,这也是 JS 最多能表示的精度。它的长度是 16,所以可以使用 toPrecision(16) 来做精度运算,超过的精度会自动做凑整处理。于是就有:

    0.10000000000000000555.toPrecision(16)
    // 返回 0.1000000000000000,去掉末尾的零后正好为 0.1
    
    // 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试:
    0.1.toPrecision(21) = 0.100000000000000005551

    大数危机

    可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢?
    由于 E 最大值是 1023,所以最大可以表示的整数是 2^1024 - 1,这就是能表示的最大整数。但你并不能这样计算这个数字,因为从 2^1024 开始就变成了 Infinity

    > Math.pow(2, 1023)
    8.98846567431158e+307
    
    > Math.pow(2, 1024)
    Infinity

    那么对于 (2^53, 2^63) 之间的数会出现什么情况呢?

    • (2^53, 2^54) 之间的数会两个选一个,只能精确表示偶数
    • (2^54, 2^55) 之间的数会四个选一个,只能精确表示4个倍数
    • ... 依次跳过更多2的倍数

    下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53) 只是最中间非常小的一部分,越往两边越稀疏越不精确。
    fig1.jpg

    在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了
    9007199254740992,最终的解法是把订单号改成字符串处理。

    要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多。所以原生支持大数就很有必要了,现在 TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有望彻底解决。在浏览器正式支持前,可以使用 Babel 7.0 来实现,它的内部是自动转换成 big-integer 来计算,要注意的是这样能保持精度但运算效率会降低。

    toPrecision vs toFixed

    数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。注意在计算的中间过程不要使用,只用于最终结果。

    不同点就需要注意一下:

    • toPrecision 是处理精度,精度是从左至右第一个不为0的数开始数起。
    • toFixed 是小数点后指定位数取整,从小数点开始数起。

    两者都能对多余数字做凑整处理,也有些人用 toFixed 来做四舍五入,但一定要知道它是有 Bug 的。

    如:1.005.toFixed(2) 返回的是 1.00 而不是 1.01

    原因: 1.005 实际对应的数字是 1.00499999999999989,在四舍五入时全部被舍去!

    解法:使用专业的四舍五入函数 Math.round() 来处理。但 Math.round(1.005 * 100) / 100 还是不行,因为 1.005 * 100 = 100.49999999999999。还需要把乘法和除法精度误差都解决后再使用 Math.round。可以使用后面介绍的 number-precision#round 方法来解决。

    解决方案

    回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储无限的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。

    数据展示类

    当你拿到 1.4000000000000001 这样的数据要展示时,建议使用 toPrecision 凑整并 parseFloat 转成数字后再显示,如下:

    parseFloat(1.4000000000000001.toPrecision(12)) === 1.4  // True
    

    封装成方法就是:

    //字符串转换成数字并处理精度问题
    function parseNums(ratio) {
      if(ratio===null)return "";
      if(ratio==="")return "";
      return parseFloat((ratio*100).toPrecision(12));
    }

    为什么选择 12 做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。

    数据运算类

    对于运算类操作,如 +-*/,就不能使用 toPrecision 了。正确的做法是把小数转成整数后再运算。以加法为例:

    /**
     * 精确加法
     */
    function add(num1, num2) {
      const num1Digits = (num1.toString().split('.')[1] || '').length;
      const num2Digits = (num2.toString().split('.')[1] || '').length;
      const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits));
      return (num1 * baseNum + num2 * baseNum) / baseNum;
    }

    以上方法能适用于大部分场景。遇到科学计数法如 2.3e+1(当数字精度大于21时,数字会强制转为科学计数法形式显示)时还需要特别处理一下。

  • 相关阅读:
    .net Core使用EFCore连接数据库
    前端实践项目(二)webpack生成html和外部引用
    前端实践项目(一)使用webpack进行打包编译
    消息队列的模式
    消息队列的应用场景
    .Net EasyNetQ的使用
    .Net中简单地使用RabbitMQ消息队列
    C# 虚函数virtual的使用之二
    C#之System.Object
    .Net EntityFramework(EF) CodeFirst模式
  • 原文地址:https://www.cnblogs.com/wangking/p/11175235.html
Copyright © 2011-2022 走看看