zoukankan      html  css  js  c++  java
  • tensorflow:实战Google深度学习框架第四章02神经网络优化(学习率,避免过拟合,滑动平均模型)

    1、学习率的设置既不能太小,又不能太大,解决方法:使用指数衰减法

    例如:

    假设我们要最小化函数 y=x2y=x2, 选择初始点 x0=5x0=5

     1. 学习率为1的时候,x在5和-5之间震荡。
    import tensorflow as tf
    TRAINING_STEPS = 10
    LEARNING_RATE = 1
    x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
    y = tf.square(x)
    
    train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(TRAINING_STEPS):
            sess.run(train_op)
            x_value = sess.run(x)
            print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value) 
    After 1 iteration(s): x1 is -5.000000.
    After 2 iteration(s): x2 is 5.000000.
    After 3 iteration(s): x3 is -5.000000.
    After 4 iteration(s): x4 is 5.000000.
    After 5 iteration(s): x5 is -5.000000.
    After 6 iteration(s): x6 is 5.000000.
    After 7 iteration(s): x7 is -5.000000.
    After 8 iteration(s): x8 is 5.000000.
    After 9 iteration(s): x9 is -5.000000.
    After 10 iteration(s): x10 is 5.000000.

    2. 学习率为0.001的时候,下降速度过慢,在901轮时才收敛到0.823355

    TRAINING_STEPS = 1000
    LEARNING_RATE = 0.001
    x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
    y = tf.square(x)
    
    train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(TRAINING_STEPS):
            sess.run(train_op)
            if i % 100 == 0: 
                x_value = sess.run(x)
                print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value)
    After 1 iteration(s): x1 is 4.990000.
    After 101 iteration(s): x101 is 4.084646.
    After 201 iteration(s): x201 is 3.343555.
    After 301 iteration(s): x301 is 2.736923.
    After 401 iteration(s): x401 is 2.240355.
    After 501 iteration(s): x501 is 1.833880.
    After 601 iteration(s): x601 is 1.501153.
    After 701 iteration(s): x701 is 1.228794.
    After 801 iteration(s): x801 is 1.005850.
    After 901 iteration(s): x901 is 0.823355.

    3. 使用指数衰减的学习率,在迭代初期得到较高的下降速度,可以在较小的训练轮数下取得不错的收敛程度

    TRAINING_STEPS = 100
    global_step = tf.Variable(0)
    LEARNING_RATE = tf.train.exponential_decay(0.1, global_step, 1, 0.96, staircase=True)
    
    x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
    y = tf.square(x)
    train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y, global_step=global_step)
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(TRAINING_STEPS):
            sess.run(train_op)
            if i % 10 == 0:
                LEARNING_RATE_value = sess.run(LEARNING_RATE)
                x_value = sess.run(x)
                print "After %s iteration(s): x%s is %f, learning rate is %f."% (i+1, i+1, x_value, LEARNING_RATE_value)
    After 1 iteration(s): x1 is 4.000000, learning rate is 0.096000.
    After 11 iteration(s): x11 is 0.690561, learning rate is 0.063824.
    After 21 iteration(s): x21 is 0.222583, learning rate is 0.042432.
    After 31 iteration(s): x31 is 0.106405, learning rate is 0.028210.
    After 41 iteration(s): x41 is 0.065548, learning rate is 0.018755.
    After 51 iteration(s): x51 is 0.047625, learning rate is 0.012469.
    After 61 iteration(s): x61 is 0.038558, learning rate is 0.008290.
    After 71 iteration(s): x71 is 0.033523, learning rate is 0.005511.
    After 81 iteration(s): x81 is 0.030553, learning rate is 0.003664.
    After 91 iteration(s): x91 is 0.028727, learning rate is 0.002436.

    2、过拟合

    要避免过拟合,解决办法:正则化

    1. 生成模拟数据集。

    import tensorflow as tf
    import matplotlib.pyplot as plt
    import numpy as np
    
    data = []
    label = []
    np.random.seed(0)
    
    # 以原点为圆心,半径为1的圆把散点划分成红蓝两部分,并加入随机噪音。
    for i in range(150):
        x1 = np.random.uniform(-1,1)
        x2 = np.random.uniform(0,2)
        if x1**2 + x2**2 <= 1:
            data.append([np.random.normal(x1, 0.1),np.random.normal(x2,0.1)])
            label.append(0)
        else:
            data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
            label.append(1)
            
    data = np.hstack(data).reshape(-1,2)
    label = np.hstack(label).reshape(-1, 1)
    plt.scatter(data[:,0], data[:,1], c=label,
               cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
    plt.show()

    2. 定义一个获取权重,并自动加入正则项到损失的函数

    def get_weight(shape, lambda1):
        var = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
        tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(lambda1)(var))
        return var

    3. 定义神经网络。

    x = tf.placeholder(tf.float32, shape=(None, 2))
    y_ = tf.placeholder(tf.float32, shape=(None, 1))
    sample_size = len(data)
    
    # 每层节点的个数
    layer_dimension = [2,10,5,3,1]
    
    n_layers = len(layer_dimension)
    
    cur_layer = x
    in_dimension = layer_dimension[0]
    
    # 循环生成网络结构
    for i in range(1, n_layers):
        out_dimension = layer_dimension[i]
        weight = get_weight([in_dimension, out_dimension], 0.003)
        bias = tf.Variable(tf.constant(0.1, shape=[out_dimension]))
        cur_layer = tf.nn.elu(tf.matmul(cur_layer, weight) + bias)
        in_dimension = layer_dimension[i]
    
    y= cur_layer
    
    # 损失函数的定义。
    mse_loss = tf.reduce_sum(tf.pow(y_ - y, 2)) / sample_size
    tf.add_to_collection('losses', mse_loss)
    loss = tf.add_n(tf.get_collection('losses'))

    4. 训练不带正则项的损失函数mse_loss

    # 定义训练的目标函数mse_loss,训练次数及训练模型
    train_op = tf.train.AdamOptimizer(0.001).minimize(mse_loss)
    TRAINING_STEPS = 40000
    
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAINING_STEPS):
            sess.run(train_op, feed_dict={x: data, y_: label})
            if i % 2000 == 0:
                print("After %d steps, mse_loss: %f" % (i,sess.run(mse_loss, feed_dict={x: data, y_: label})))
    
        # 画出训练后的分割曲线       
        xx, yy = np.mgrid[-1.2:1.2:.01, -0.2:2.2:.01]
        grid = np.c_[xx.ravel(), yy.ravel()]
        probs = sess.run(y, feed_dict={x:grid})
        probs = probs.reshape(xx.shape)
    
    plt.scatter(data[:,0], data[:,1], c=label,
               cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
    plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
    plt.show()
    After 0 steps, mse_loss: 2.315934
    After 2000 steps, mse_loss: 0.054761
    After 4000 steps, mse_loss: 0.047252
    After 6000 steps, mse_loss: 0.029857
    After 8000 steps, mse_loss: 0.026388
    After 10000 steps, mse_loss: 0.024671
    After 12000 steps, mse_loss: 0.023310
    After 14000 steps, mse_loss: 0.021284
    After 16000 steps, mse_loss: 0.019408
    After 18000 steps, mse_loss: 0.017947
    After 20000 steps, mse_loss: 0.016683
    After 22000 steps, mse_loss: 0.015700
    After 24000 steps, mse_loss: 0.014854
    After 26000 steps, mse_loss: 0.014021
    After 28000 steps, mse_loss: 0.013597
    After 30000 steps, mse_loss: 0.013161
    After 32000 steps, mse_loss: 0.012915
    After 34000 steps, mse_loss: 0.012671
    After 36000 steps, mse_loss: 0.012465
    After 38000 steps, mse_loss: 0.012251

    5. 训练带正则项的损失函数loss。

    # 定义训练的目标函数loss,训练次数及训练模型
    train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
    TRAINING_STEPS = 40000
    
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAINING_STEPS):
            sess.run(train_op, feed_dict={x: data, y_: label})
            if i % 2000 == 0:
                print("After %d steps, loss: %f" % (i, sess.run(loss, feed_dict={x: data, y_: label})))
    
        # 画出训练后的分割曲线       
        xx, yy = np.mgrid[-1:1:.01, 0:2:.01]
        grid = np.c_[xx.ravel(), yy.ravel()]
        probs = sess.run(y, feed_dict={x:grid})
        probs = probs.reshape(xx.shape)
    
    plt.scatter(data[:,0], data[:,1], c=label,
               cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white")
    plt.contour(xx, yy, probs, levels=[.5], cmap="Greys", vmin=0, vmax=.1)
    plt.show()
    After 0 steps, loss: 2.468601
    After 2000 steps, loss: 0.111190
    After 4000 steps, loss: 0.079666
    After 6000 steps, loss: 0.066808
    After 8000 steps, loss: 0.060114
    After 10000 steps, loss: 0.058860
    After 12000 steps, loss: 0.058358
    After 14000 steps, loss: 0.058301
    After 16000 steps, loss: 0.058279
    After 18000 steps, loss: 0.058266
    After 20000 steps, loss: 0.058260
    After 22000 steps, loss: 0.058255
    After 24000 steps, loss: 0.058243
    After 26000 steps, loss: 0.058225
    After 28000 steps, loss: 0.058208
    After 30000 steps, loss: 0.058196
    After 32000 steps, loss: 0.058187
    After 34000 steps, loss: 0.058181
    After 36000 steps, loss: 0.058177
    After 38000 steps, loss: 0.058174

    3、滑动平均模型

    可以使模型有更好的表现

    1. 定义变量及滑动平均类

    import tensorflow as tf
    v1 = tf.Variable(0, dtype=tf.float32)
    step = tf.Variable(0, trainable=False)
    ema = tf.train.ExponentialMovingAverage(0.99, step)
    maintain_averages_op = ema.apply([v1]) 

    2. 查看不同迭代中变量取值的变化。

    with tf.Session() as sess:
        
        # 初始化
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
        print sess.run([v1, ema.average(v1)])
        
        # 更新变量v1的取值
        sess.run(tf.assign(v1, 5))
        sess.run(maintain_averages_op)
        print sess.run([v1, ema.average(v1)]) 
        
        # 更新step和v1的取值
        sess.run(tf.assign(step, 10000))  
        sess.run(tf.assign(v1, 10))
        sess.run(maintain_averages_op)
        print sess.run([v1, ema.average(v1)])       
        
        # 更新一次v1的滑动平均值
        sess.run(maintain_averages_op)
        print sess.run([v1, ema.average(v1)]) 
    [0.0, 0.0]
    [5.0, 4.5]
    [10.0, 4.5549998]
    [10.0, 4.6094499]
    
    
     
  • 相关阅读:
    VS2015调试ArcMap Add-in插件提示尝试运行项目时出错,无法启动程序“路径arcmap.exe”
    c#重命名文件,报错“System.NotSupportedException”类型的未经处理的异常在 mscorlib.dll 中发生”
    C# string contains 不区分大小写
    CSS div 高度满屏
    ArcGIS Server SOE开发之奇怪异常:
    C# 读取XML注释
    .Net程序员之不学Java做安卓开发:奇怪的Java语法
    .Net程序员之不学Java做安卓开发:Android Studio中的即时调试窗口
    JS去遍历Table的所有单元格中的内容
    判断 checkbox 是否选中以及 设置checkbox选中
  • 原文地址:https://www.cnblogs.com/wanglei0103/p/7554291.html
Copyright © 2011-2022 走看看