zoukankan      html  css  js  c++  java
  • k-近邻算法(KNN)识别手写数字

    k-近邻算法(KNN)

    目录 trainingDigits 中包含了大约 2000 个例子,每个例子内容如下图所示,每个数字大约有 200 个样本;目录 testDigits 中包含了大约 900 个测试数据。

    将一个32x32的二进制图像矩阵转化为1x1024的向量。

    函数img2vector,将图像转化为向量,该函数创建1x1024的数组,然后打开给定的文件,循环读出文件的前32行,并将每行的头32个字值存储在NumPy数组种,最后返回数组。

    #将图像文本数据转换为向量
    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    

    将这些数据输入到分类器,检测分类器的执行效果。

    #测试算法
    def handwritingClassTest():
        hwLabels = []
        trainingFileList = listdir('trainingDigits')           #加载训练集
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     
            classNumStr = int(fileStr.split('_')[0])
            hwLabels.append(classNumStr)
            trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        testFileList = listdir('testDigits')        #遍历
        errorCount = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0]     
            classNumStr = int(fileStr.split('_')[0])
            vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
            classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
            if (classifierResult != classNumStr): errorCount += 1.0
        print "
    the total number of errors is: %d" % errorCount
        print "
    the total error rate is: %f" % (errorCount/float(mTest))
    

     测试算法:编写函数使用提供的部分数据集作为测试样本,如果预测分类与实际类别不同,则标记为一个错误

    classify0)()函数有4个参数:用于分类的输入向量是inX,训练集为dataSet,标签向量为labels,,k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵dataSet的行数相同。

    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]
        diffMat = tile(inX, (dataSetSize,1)) - dataSet   #把inX二维数组化,dataSetSize表示生成数组后的行数,1表示列的倍数。实现了矩阵之间的减法。
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1)。#axis=1:参数等于1,矩阵中行之间的数的求和
        distances = sqDistances**0.5
        sortedDistIndicies = distances.argsort()  #argsort():对一个数组进行非降序排序   
        classCount={}          
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            #访问下标键为voteIlabel的项
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    

     代码

    from numpy import *
    import operator
    from os import listdir
    
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]
        diffMat = tile(inX, (dataSetSize,1)) - dataSet   #把inX二维数组化,dataSetSize表示生成数组后的行数,1表示列的倍数。实现了矩阵之间的减法。
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1)。#axis=1:参数等于1,矩阵中行之间的数的求和
        distances = sqDistances**0.5
        sortedDistIndicies = distances.argsort()  #argsort():对一个数组进行非降序排序   
        classCount={}          
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            #访问下标键为voteIlabel的项
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    
    #将图像文本数据转换为向量
    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    
    
    #测试算法
    def handwritingClassTest():
        hwLabels = []
        trainingFileList = listdir('trainingDigits')           #加载训练集
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     
            classNumStr = int(fileStr.split('_')[0])
            hwLabels.append(classNumStr)
            trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        testFileList = listdir('testDigits')        #遍历
        errorCount = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0]     
            classNumStr = int(fileStr.split('_')[0])
            vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
            classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
            if (classifierResult != classNumStr): errorCount += 1.0
        print "
    the total number of errors is: %d" % errorCount
        print "
    the total error rate is: %f" % (errorCount/float(mTest))
    

     运行:

    >>> import kNN
    >>> kNN.handwritingClassTest()
    the classifier came back with: 4, the real answer is: 4
    the classifier came back with: 4, the real answer is: 4
    .
    .
    .
    the classifier came back with: 3, the real answer is: 3
    
    the total number of errors is: 11
    
    the total error rate is: 0.011628
    
  • 相关阅读:
    面向对象思想
    jQuery随笔
    总结关于linux操作
    转.linux上安装python
    sql server 基本语句
    linux 常见指令
    loadrunner 录制时不自动弹出网页
    Linux 安装MySQL
    linux关于安装
    loadrunner 性能测试
  • 原文地址:https://www.cnblogs.com/wanglinjie/p/11600922.html
Copyright © 2011-2022 走看看