zoukankan      html  css  js  c++  java
  • 朴素贝叶斯分类器(MNIST数据集)

    P(y|X)=P(y)*P(X|y)/P(X)

    样本中的属性相互独立;

    原问题的等价问题为:

    数据处理
    为防止P(y)*P(X|y)的值下溢,对原问题取对数,即:

    注意:若某属性值在训练集中没有与某个类同时出现过,则直接P(y)或P(X|y)可能为0,这样计算出P(y)*P(X|y)的值为0,没有可比性,且不便于求对数,因此需要对概率值进行“平滑”处理,常用拉普拉斯修正。

    先验概率修正:令Dy表示训练集D中第y类样本组合的集合,N表示训练集D中可能的类别数

    即每个类别的样本个数都加 1。

    类条件概率:另Dy,xi表示Dc中在第 i 个属性上取值为xi的样本组成的集合,Ni表示第 i 个属性可能的取值数

    即该类别中第 i 个属性都增加一个样本。

    --------------------------------------------------------------

    数据预处理

    训练模型

    测试样本

    函数调用

    参考

    python朴素贝叶斯分类MNIST数据集

    import struct
    from numpy import *
    import numpy as np
    import time
    def read_image(file_name):
        #先用二进制方式把文件都读进来
        file_handle=open(file_name,"rb")  #以二进制打开文档
        file_content=file_handle.read()   #读取到缓冲区中
        offset=0
        head = struct.unpack_from('>IIII', file_content, offset)  # 取前4个整数,返回一个元组
        offset += struct.calcsize('>IIII')
        imgNum = head[1]  #图片数
        rows = head[2]   #宽度
        cols = head[3]  #高度
    
        images=np.empty((imgNum , 784))#empty,是它所常见的数组内的所有元素均为空,没有实际意义,它是创建数组最快的方法
        image_size=rows*cols#单个图片的大小
        fmt='>' + str(image_size) + 'B'#单个图片的format
    
        for i in range(imgNum):
            images[i] = np.array(struct.unpack_from(fmt, file_content, offset))
            # images[i] = np.array(struct.unpack_from(fmt, file_content, offset)).reshape((rows, cols))
            offset += struct.calcsize(fmt)
        return images
    
    #读取标签
    def read_label(file_name):
        file_handle = open(file_name, "rb")  # 以二进制打开文档
        file_content = file_handle.read()  # 读取到缓冲区中
    
        head = struct.unpack_from('>II', file_content, 0)  # 取前2个整数,返回一个元组
        offset = struct.calcsize('>II')
    
        labelNum = head[1]  # label数
        # print(labelNum)
        bitsString = '>' + str(labelNum) + 'B'  # fmt格式:'>47040000B'
        label = struct.unpack_from(bitsString, file_content, offset)  # 取data数据,返回一个元组
        return np.array(label)
    
    def loadDataSet():
        #mnist
        train_x_filename="train-images-idx3-ubyte"
        train_y_filename="train-labels-idx1-ubyte"
        test_x_filename="t10k-images-idx3-ubyte"
        test_y_filename="t10k-labels-idx1-ubyte"
    
        # #fashion mnist
        # train_x_filename="fashion-train-images-idx3-ubyte"
        # train_y_filename="fashion-train-labels-idx1-ubyte"
        # test_x_filename="fashion-t10k-images-idx3-ubyte"
        # test_y_filename="fashion-t10k-labels-idx1-ubyte"
    
        train_x=read_image(train_x_filename)#60000*784 的矩阵
        train_y=read_label(train_y_filename)#60000*1的矩阵
        test_x=read_image(test_x_filename)#10000*784
        test_y=read_label(test_y_filename)#10000*1
    
        train_x=normalize(train_x)
        test_x=normalize(test_x)
        # #调试的时候让速度快点,就先减少数据集大小
        # train_x=train_x[0:1000,:]
        # train_y=train_y[0:1000]
        # test_x=test_x[0:500,:]
        # test_y=test_y[0:500]
    
        return train_x, test_x, train_y, test_y
    
    def  normalize(data):#图片像素二值化,变成0-1分布
        m=data.shape[0]
        n=np.array(data).shape[1]
        for i in range(m):
            for j in range(n):
                if data[i,j]!=0:
                    data[i,j]=1
                else:
                    data[i,j]=0
        return data
    
    #(1)计算先验概率及条件概率
    def train_model(train_x,train_y,classNum):#classNum是指有10个类别,这里的train_x是已经二值化,
        m=train_x.shape[0]
        n=train_x.shape[1]
        # prior_probability=np.zeros(n)#先验概率
        prior_probability=np.zeros(classNum)#先验概率
        conditional_probability=np.zeros((classNum,n,2))#条件概率
        #计算先验概率和条件概率
        for i in range(m):#m是图片数量,共60000张
            img=train_x[i]#img是第i个图片,是1*n的行向量
            label=train_y[i]#label是第i个图片对应的label
            prior_probability[label]+=1#统计label类的label数量(p(Y=ck),下标用来存放label,prior_probability[label]除以n就是某个类的先验概率
            for j in range(n):#n是特征数,共784个
                temp=img[j].astype(int)#img[j]是0.0,放到下标去会显示错误,只能用整数
    
                conditional_probability[label][j][temp] += 1
    
                # conditional_probability[label][j][img[j]]+=1#统计的是类为label的,在每个列中为1或者0的行数为多少,img[j]的值要么就是0要么就是1,计算条件概率
    
        #将概率归到[1.10001]
        for i in range(classNum):
            for j in range(n):
                #经过二值化的图像只有0,1两种取值
                pix_0=conditional_probability[i][j][0]
                pix_1=conditional_probability[i][j][1]
    
                #计算0,1像素点对应的条件概率
                probability_0=(float(pix_0)/float(pix_0+pix_1))*10000+1
                probability_1 = (float(pix_1)/float(pix_0 + pix_1)) * 10000 + 1
    
                conditional_probability[i][j][0]=probability_0
                conditional_probability[i][j][1]=probability_1
        return prior_probability,conditional_probability
    
    #(2)对给定的x,计算先验概率和条件概率的乘积
    def cal_probability(img,label,prior_probability,conditional_probability):
        probability=int(prior_probability[label])#先验概率
        n=img.shape[0]
        # print(n)
        for i in range(n):#应该是特征数
            probability*=int(conditional_probability[label][i][img[i].astype(int)])
    
        return probability
    
    #确定实例x的类,相当于argmax
    def predict(test_x,test_y,prior_probability,conditional_probability):#传进来的test_x或者是train_x都是二值化后的
        predict_y=[]
        m=test_x.shape[0]
        n=test_x.shape[1]
        for i in range(m):
            img=np.array(test_x[i])#img已经是二值化以后的列向量
            label=test_y[i]
            max_label=0
            max_probability= cal_probability(img,0,prior_probability,conditional_probability)
            for j in range(1,10):#从下标为1开始,因为初始值是下标为0
                probability=cal_probability(img,j,prior_probability,conditional_probability)
                if max_probability<probability:
                    max_probability=probability
                    max_label=j
            predict_y.append(max_label)#用来记录每行最大概率的label
        return np.array(predict_y)
    
    def cal_accuracy(test_y,predict_y):
        m=test_y.shape[0]
        errorCount=0.0
        for i in range(m):
            if test_y[i]!=predict_y[i]:
                errorCount+=1
        accuracy=1.0-float(errorCount)/m
        return accuracy
    
    if __name__=='__main__':
        classNum=10
        print("Start reading data...")
        time1=time.time()
        train_x, test_x, train_y, test_y=loadDataSet()
        train_x=normalize(train_x)
        test_x=normalize(test_x)
    
        time2=time.time()
        print("read data cost",time2-time1,"second")
    
        print("start training data...")
        prior_probability, conditional_probability=train_model(train_x,train_y,classNum)
        for i in range(classNum):
            print(prior_probability[i])#输出一下每个标签的总共数量
        time3=time.time()
        print("train data cost",time3-time2,"second")
    
        print("start predicting data...")
        predict_y=predict(test_x,test_y,prior_probability,conditional_probability)
        time4=time.time()
        print("predict data cost",time4-time3,"second")
    
        print("start calculate accuracy...")
        acc=cal_accuracy(test_y,predict_y)
        time5=time.time()
        print("accuarcy",acc)
        print("calculate accuarcy cost",time5-time4,"second")
    
  • 相关阅读:
    CSS外边距的合并
    四大主流浏览器内核
    ViewPort视口
    url、src、href定义以及使用区别
    Debug和Release区别
    基线概念
    浅谈C#循环控制流程语句(web前端基础)
    With you With me
    css元素内容基础
    年轻人有梦想,老人有回忆
  • 原文地址:https://www.cnblogs.com/wanglinjie/p/11600994.html
Copyright © 2011-2022 走看看