zoukankan      html  css  js  c++  java
  • python--迭代器&生成器

    1.列表生成式,迭代器&生成器

    列表生成式

    孩子,我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 

     1 >>> a
     2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
     3 >>> b = []
     4 >>> for i in a:b.append(i+1)
     5 ... 
     6 >>> b
     7 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     8 >>> a = b
     9 >>> a
    10 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    11 
    12 普通青年版
     1 >>> a
     2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
     3 >>> a = map(lambda x:x+1, a)
     4 >>> a
     5 <map object at 0x101d2c630>
     6 >>> for i in a:print(i)
     7 ... 
     8 3
     9 5
    10 7
    11 9
    12 11
    13 
    14 文艺青年版

    其实还有一种写法,如下 

    1 >>> a = [i+1 for i in range(10)]
    2 >>> a
    3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

    这就叫做列表生成

    生成器

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    1 >>> L = [x * x for x in range(10)]
    2 >>> L
    3 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    4 >>> g = (x * x for x in range(10))
    5 >>> g
    6 <generator object <genexpr> at 0x1022ef630>

    创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

     1 >>> next(g)
     2 0
     3 >>> next(g)
     4 1
     5 >>> next(g)
     6 4
     7 >>> next(g)
     8 9
     9 >>> next(g)
    10 16
    11 >>> next(g)
    12 25
    13 >>> next(g)
    14 36
    15 >>> next(g)
    16 49
    17 >>> next(g)
    18 64
    19 >>> next(g)
    20 81
    21 >>> next(g)
    22 Traceback (most recent call last):
    23   File "<stdin>", line 1, in <module>
    24 StopIteration

    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

     1 >>> g = (x * x for x in range(10))
     2 >>> for n in g:
     3 ...     print(n)
     4 ...
     5 0
     6 1
     7 4
     8 9
     9 16
    10 25
    11 36
    12 49
    13 64
    14 81

    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    1 def fib(max):
    2     n, a, b = 0, 0, 1
    3     while n < max:
    4         print(b)
    5         a, b = b, a + b
    6         n = n + 1
    7     return 'done'

    注意,赋值语句:

    1 a, b = b, a + b

    相当于:

    1 t = (b, a + b) # t是一个tuple
    2 a = t[0]
    3 b = t[1]

    但不必显式写出临时变量t就可以赋值。

    上面的函数可以输出斐波那契数列的前N个数:

     1 >>> fib(10)
     2 1
     3 1
     4 2
     5 3
     6 5
     7 8
     8 13
     9 21
    10 34
    11 55
    12 done

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

     1 def fib(max):
     2     n,a,b = 0,0,1
     3 
     4     while n < max:
     5         #print(b)
     6         yield  b
     7         a,b = b,a+b
     8 
     9         n += 1
    10 
    11     return 'done'

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    1 >>> f = fib(6)
    2 >>> f
    3 <generator object fib at 0x104feaaa0>

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

     1 data = fib(10)
     2 print(data)
     3 
     4 print(data.__next__())
     5 print(data.__next__())
     6 print("干点别的事")
     7 print(data.__next__())
     8 print(data.__next__())
     9 print(data.__next__())
    10 print(data.__next__())
    11 print(data.__next__())
    12 
    13 #输出
    14 <generator object fib at 0x101be02b0>
    15 1
    16 干点别的事
    17 3
    18 8

    在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    1 >>> for n in fib(6):
    2 ...     print(n)
    3 ...
    4 1
    5 3
    6 8

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

     1 >>> g = fib(6)
     2 >>> while True:
     3 ...     try:
     4 ...         x = next(g)
     5 ...         print('g:', x)
     6 ...     except StopIteration as e:
     7 ...         print('Generator return value:', e.value)
     8 ...         break
     9 ...
    10 g: 1
    11 g: 1
    12 g: 2
    13 g: 3
    14 g: 5
    15 g: 8
    16 Generator return value: done

    关于如何捕获错误,后面的错误处理还会详细讲解。

    还可通过yield实现在单线程的情况下实现并发运算的效果  

     1 #_*_coding:utf-8_*_
     2 __author__ = 'Alex Li'
     3 
     4 import time
     5 def consumer(name):
     6     print("%s 准备吃包子啦!" %name)
     7     while True:
     8        baozi = yield
     9 
    10        print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
    11 
    12 
    13 def producer(name):
    14     c = consumer('A')
    15     c2 = consumer('B')
    16     c.__next__()
    17     c2.__next__()
    18     print("老子开始准备做包子啦!")
    19     for i in range(10):
    20         time.sleep(1)
    21         print("做了2个包子!")
    22         c.send(i)
    23         c2.send(i)
    24 
    25 producer("alex")
    26 
    27 通过生成器实现协程并行运算

    迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如listtupledictsetstr等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    可以使用isinstance()判断一个对象是否是Iterable对象:

     1 >>> from collections import Iterable
     2 >>> isinstance([], Iterable)
     3 True
     4 >>> isinstance({}, Iterable)
     5 True
     6 >>> isinstance('abc', Iterable)
     7 True
     8 >>> isinstance((x for x in range(10)), Iterable)
     9 True
    10 >>> isinstance(100, Iterable)
    11 False

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    *可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

    可以使用isinstance()判断一个对象是否是Iterator对象:

    1 >>> from collections import Iterator
    2 >>> isinstance((x for x in range(10)), Iterator)
    3 True
    4 >>> isinstance([], Iterator)
    5 False
    6 >>> isinstance({}, Iterator)
    7 False
    8 >>> isinstance('abc', Iterator)
    9 False

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    listdictstrIterable变成Iterator可以使用iter()函数:

    1 >>> isinstance(iter([]), Iterator)
    2 True
    3 >>> isinstance(iter('abc'), Iterator)
    4 True

    你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python的for循环本质上就是通过不断调用next()函数实现的,例如:

    1 for x in [1, 2, 3, 4, 5]:
    2     pass

    实际上完全等价于:

     1 # 首先获得Iterator对象:
     2 it = iter([1, 2, 3, 4, 5])
     3 # 循环:
     4 while True:
     5     try:
     6         # 获得下一个值:
     7         x = next(it)
     8     except StopIteration:
     9         # 遇到StopIteration就退出循环
    10         break
  • 相关阅读:
    spock和junit测试报告
    docker复制
    Linux清空文件
    docker run 参数
    C# 线程手册 第三章 使用线程 实现一个数据库连接池(实战篇)
    反射入门
    反射动态调用、实例化窗体的方法
    创建业务逻辑层
    利用C#的反射机制动态调用DLL类库
    C#.Net 持久化对象为XML文件
  • 原文地址:https://www.cnblogs.com/wangmo/p/6039583.html
Copyright © 2011-2022 走看看