ConcurrentHashMap通过将完整的表分成若干个segment的方式实现锁分离,每个segment都是一个独立的线程安全的Hash表,当需要操作数据时,HashMap通过Key的hash值和segment数量来路由到某个segment,剩下的操作交给segment来完成。
下面来看下segment的实现:
segment是一类特殊的hash表,继承了ReentrantLock类实现锁功能
static final class Segment<K,V> extends ReentrantLock implements Serializable {
/*
1.segment的读操作不需要加锁,但需要volatile读
2.当进行扩容时(调用reHash方法),需要拷贝原始数据,在拷贝数据上操作,保证在扩容完成前读操作仍可以在原始数据上进行。
3.只有引起数据变化的操作需要加锁。
4.scanAndLock(删除、替换)/scanAndLockForPut(新增)两个方法提供了获取锁的途径,是通过自旋锁实现的。
5.在等待获取锁的过程中,两个方法都会对目标数据进行查找,每次查找都会与上次查找的结果对比,虽然查找结果不会被调用它的方法使用,但是这样做可以减少后续操作可能的cache miss。
*/
private static final long serialVersionUID = 2249069246763182397L;
/*
自旋锁的等待次数上限,多处理器时64次,单处理器时1次。
每次等待都会进行查询操作,当等待次数超过上限时,不再自旋,调用lock方法等待获取锁。
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
/*
segment中的hash表,与hashMap结构相同,表中每个元素都是一个链表。
*/
transient volatile HashEntry<K,V>[] table;
/*
表中元素个数
*/
transient int count;
/*
记录数据变化操作的次数。
这一数值主要为Map的isEmpty和size方法提供同步操作检查,这两个方法没有为全表加锁。
在统计segment.count前后,都会统计segment.modCount,如果前后两次值发生变化,可以判断在统计count期间有segment发生了其它操作。
*/
transient int modCount;
/*
容量阈值,超过这一数值后segment将进行扩容,容量变为原来的两倍。
threshold = loadFactor*table.length
*/
transient int threshold;
final float loadFactor;
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
}
/*
onlyIfAbsent:若为true,当key已经有对应的value时,不进行替换;
若为false,即使key已经有对应的value,仍进行替换。
关于put方法,很重要的一点是segment最大长度的问题:
代码 c > threshold && tab.length < MAXIMUM_CAPACITY 作为是否需要扩容的判断条件。
扩容条件是node总数超过阈值且table长度小于MAXIMUM_CAPACITY也就是2的30次幂。
由于扩容都是容量翻倍,所以tab.length最大值就是2的30次幂。此后,即使node总数超过了阈值,也不会扩容了。
由于table[n]对应的是一个链表,链表内元素个数理论上是无限的,所以segment的node总数理论上也是无上限的。
ConcurrentHashMap的size()方法考虑到了这个问题,当计算结果超过Integer.MAX_VALUE时,直接返回Integer.MAX_VALUE.
*/
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
//tryLock判断是否已经获得锁.
//如果没有获得,调用scanAndLockForPut方法自旋等待获得锁。
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
//计算key在表中的下标
int index = (tab.length - 1) & hash;
//获取链表的第一个node
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
//链表下一个node不为空,比较key值是否相同。
//相同的,根据onlyIfAbsent决定是否替换已有的值
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
//链表遍历到最后一个node,仍没有找到key值相同的.
//此时应当生成新的node,将node的next指向链表表头,这样新的node将处于链表的【表头】位置
if (node != null)
//scanAndLockForPut当且仅当hash表中没有该key值时
//才会返回新的node,此时node不为null
node.setNext(first);
else
//node为null,表明scanAndLockForPut过程中找到了key值相同的node
//可以断定在等待获取锁的过程中,这个node被删除了,此时需要新建一个node
node = new HashEntry<K,V>(hash, key, value, first);
//添加新的node涉及到扩容,当node数量超过阈值时,调用rehash方法进行扩容,并将新的node加入对应链表表头;
//没有超过阈值,直接加入链表表头。
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
/*
hash表容量翻倍,将需要添加的node添加到扩容后的表中。
hash表默认初始长度为16,实际长度总是2的n次幂。
设当前table长度为S,根据key的hash值计算table中下标index的公式:
扩容前:oldIndex = (S-1)&hash
扩容后:newIndex = (S<<1-1)&hash
扩容前后下标变化:newIndex-oldIndex = S&hash
所以,扩容前后node所在链表在table中的下标要么不变,要么右移2的幂次。
根据本方法官方注释说明,大约六分之一的node需要复制操作。
对于每个链表,处理方法如下:
步骤一:对于链表中的每个node,计算node和node.next的新下标,如果它们不相等,记录最后一次出现这种情况时的node.next,记为nodeSpecial。
这一部分什么意思呢,假设table[n]所在的链表共有6个node,计算它们的新下标:
情况1:若计算结果为0:n,1:n+S,2:n,3:n+2,4:n,5:n,那么我们记录的特殊node编号为4;
情况2:若计算结果为0:n,1:n+S,2:n,3:n+2,4:n+4,5:n+8,那么我们记录的特殊node编号为5;
情况3:若计算结果为0:n,1:n,2:n,3:n,4:n,5:n,特殊node为0;
情况4:若计算结果为0:n+S,1:n+S,2:n+S,3:n+S,4:n+S,5:n+S,特殊node为0。
很重要的一点,由于新下标只可能是n或n+S,因此这两个位置的链表中不会出现来自其它链表的node。
对于情况3,令table[n]=node0,进入步骤三;
对于情况4,令table[n+S]=node0,进入步骤三;
对于情况1,令table[n]=node4,进入步骤二;
对于情况2,令table[n+S]=node3,进入步骤二。
步骤二:从node0遍历至nodeSpecial的前一个node,对于每一个node,调用HashEntry构造方法复制这个node,放入对应的链表。
步骤三:计算需要新插入的node的下标index,同样令node.next=table[index],table[index]=node,将node插入链表表头。
通过三步完成了链表的扩容和新node的插入。
在理解这一部分代码的过程中,牢记三点:
1.调用rehash方法的前提是已经获得了锁,所以扩容过程中不存在其他线程修改数据;
2.新的下标只有两种情况,原始下标n或者新下标n+S;
3.通过2可以推出,原表中不在同一链表的node,在新表中仍不会出现在同一链表中。
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
//拷贝table,所有操作都在oldTable上进行,不会影响无需获得锁的读操作
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;//容量翻倍
threshold = (int)(newCapacity * loadFactor);//更新阈值
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;//新的table下标,定位链表
if (next == null)
//链表只有一个node,直接赋值
newTable[idx] = e;
else {
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
//这里获取特殊node
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
//步骤一中的table[n]赋值过程
newTable[lastIdx] = lastRun;
// 步骤二,遍历剩余node,插入对应表头
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
//步骤三,处理需要插入的node
int nodeIndex = node.hash & sizeMask;
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
//将扩容后的hashTable赋予table
table = newTable;
}
/*
put方法调用本方法获取锁,通过自旋锁等待其他线程释放锁。
变量retries记录自旋锁循环次数,当retries超过MAX_SCAN_RETRIES时,不再自旋,调用lock方法等待锁释放。
变量first记录hash计算出的所在链表的表头node,每次循环结束,重新获取表头node,与first比较,如果发生变化,说明在自旋期间,有新的node插入了链表,retries计数重置。
自旋过程中,会遍历链表,如果发现不存在对应key值的node,创建一个,这个新node可以作为返回值返回。
根据官方注释,自旋过程中遍历链表是为了缓存预热,减少hash表经常出现的cache miss
*/
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; //自旋次数计数器
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
if (e == null) {
//链表为空或者遍历至链表最后一个node仍没有找到匹配
if (node == null)
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
//比较first与新获得的链表表头node是否一致,如果不一致,说明该链表别修改过,自旋计数重置
e = first = f;
retries = -1;
}
}
return node;
}
/*
remove,replace方法会调用本方法获取锁,通过自旋锁等待其他线程释放锁。
与scanAndLockForPut机制相似。
*/
private void scanAndLock(Object key, int hash) {
// similar to but simpler than scanAndLockForPut
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
int retries = -1;
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
}
/*
删除key-value都匹配的node,删除过程很简单:
1.根据hash计算table下标index。
2.根据index定位链表,遍历链表node,如果存在node的key值和value值都匹配,删除该node。
3.令node的前一个节点pred的pred.next = node.next。
*/
final V remove(Object key, int hash, Object value) {
//获得锁
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
}
/*
找到hash表中key-oldValue匹配的node,替换为newValue,替换过程与replace方法类似,不再赘述了。
*/
final boolean replace(K key, int hash, V oldValue, V newValue) {
if (!tryLock())
scanAndLock(key, hash);
boolean replaced = false;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
if (oldValue.equals(e.value)) {
e.value = newValue;
++modCount;
replaced = true;
}
break;
}
}
} finally {
unlock();
}
return replaced;
}
final V replace(K key, int hash, V value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = value;
++modCount;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
/*
清空segment,将每个链表置为空,count置为0,剩下的工作交给GC。
*/
final void clear() {
lock();
try {
HashEntry<K,V>[] tab = table;
for (int i = 0; i < tab.length ; i++)
setEntryAt(tab, i, null);
++modCount;
count = 0;
} finally {
unlock();
}
}
}
以上就是ConcurrentHashMap中关于segment部分的源码。可以看出,关于修改操作的线程安全已经被封装在segment中,甚至在ConcurrentHashMap中都不需要关心锁的问题。可以说,segment是整个ConcurrentHashMap的核心和关键。
版权声明:本文为博主原创文章,未经博主允许不得转载.