zoukankan      html  css  js  c++  java
  • 矩池云 RTX 2080 Ti+Ubuntu18.04+Tensorflow1.15.2 性能测试!

    今天为了对比滴滴云 NVIDIA A100,特地跑了一下RTX2080的TensorFlow基准测试,现在把结果记录一下!

    平台为:矩池云

    系统为:Ubuntu 18.04

    显卡为:RTX 2080 Ti

    Python版本: 3.6.10

    TensorFlow版本:1.15.2

    显卡相关内容如下:

    系统配置如下:

    测试方法:

    https://github.com/tensorflow/benchmarks

    Resnet50 BS64

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=64 --model=resnet50
    Step Img/sec total_loss
    1 images/sec: 305.5 +/- 0.0 (jitter = 0.0) 8.220
    10 images/sec: 305.2 +/- 0.3 (jitter = 0.7) 7.880
    20 images/sec: 305.3 +/- 0.2 (jitter = 0.9) 7.910
    30 images/sec: 305.1 +/- 0.2 (jitter = 0.8) 7.820
    40 images/sec: 304.9 +/- 0.2 (jitter = 0.7) 8.005
    50 images/sec: 304.8 +/- 0.1 (jitter = 0.9) 7.770
    60 images/sec: 304.5 +/- 0.2 (jitter = 1.1) 8.114
    70 images/sec: 304.3 +/- 0.2 (jitter = 1.3) 7.816
    80 images/sec: 304.2 +/- 0.2 (jitter = 1.5) 7.975
    90 images/sec: 304.0 +/- 0.1 (jitter = 1.5) 8.094
    100 images/sec: 303.8 +/- 0.1 (jitter = 1.6) 8.035
    ----------------------------------------------------------------
    total images/sec: 303.65
    ----------------------------------------------------------------

    AlexNet BS512

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=512 --model=alexnet
    Step    Img/sec total_loss
    1 images/sec: 3939.5 +/- 0.0 (jitter = 0.0) nan
    10 images/sec: 3927.5 +/- 3.0 (jitter = 12.2) nan
    20 images/sec: 3923.9 +/- 2.1 (jitter = 11.7) nan
    30 images/sec: 3923.0 +/- 2.5 (jitter = 11.0) nan
    40 images/sec: 3921.2 +/- 2.0 (jitter = 9.4) nan
    50 images/sec: 3919.0 +/- 1.8 (jitter = 9.2) nan
    60 images/sec: 3915.4 +/- 1.9 (jitter = 11.5) nan
    70 images/sec: 3912.2 +/- 2.0 (jitter = 13.7) nan
    80 images/sec: 3911.5 +/- 1.8 (jitter = 14.5) nan
    90 images/sec: 3909.8 +/- 1.8 (jitter = 15.9) nan
    100 images/sec: 3907.9 +/- 1.7 (jitter = 15.9) nan
    ----------------------------------------------------------------
    total images/sec: 3905.13
    ----------------------------------------------------------------

    Inception v3 BS64

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=64 --model=inception3
    Step    Img/sec total_loss
    1 images/sec: 200.6 +/- 0.0 (jitter = 0.0) 7.278
    10 images/sec: 200.6 +/- 0.1 (jitter = 0.6) 7.298
    20 images/sec: 200.5 +/- 0.1 (jitter = 0.4) 7.291
    30 images/sec: 200.3 +/- 0.1 (jitter = 0.4) 7.412
    40 images/sec: 200.1 +/- 0.1 (jitter = 0.7) 7.306
    50 images/sec: 199.9 +/- 0.1 (jitter = 0.8) 7.287
    60 images/sec: 199.7 +/- 0.1 (jitter = 1.0) 7.378
    70 images/sec: 199.5 +/- 0.1 (jitter = 1.2) 7.351
    80 images/sec: 199.3 +/- 0.1 (jitter = 1.3) 7.402
    90 images/sec: 199.2 +/- 0.1 (jitter = 1.2) 7.309
    100 images/sec: 199.0 +/- 0.1 (jitter = 1.2) 7.354
    ----------------------------------------------------------------
    total images/sec: 198.97
    ----------------------------------------------------------------

    VGG16 BS64

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=64 --model=vgg16
    Step    Img/sec total_loss
    1 images/sec: 180.0 +/- 0.0 (jitter = 0.0) 7.346
    10 images/sec: 179.5 +/- 0.1 (jitter = 0.2) 7.294
    20 images/sec: 179.4 +/- 0.1 (jitter = 0.3) 7.282
    30 images/sec: 179.1 +/- 0.1 (jitter = 0.4) 7.278
    40 images/sec: 178.9 +/- 0.1 (jitter = 0.8) 7.287
    50 images/sec: 178.7 +/- 0.1 (jitter = 0.7) 7.272
    60 images/sec: 178.6 +/- 0.1 (jitter = 0.7) 7.261
    70 images/sec: 178.4 +/- 0.1 (jitter = 1.0) 7.267
    80 images/sec: 178.3 +/- 0.1 (jitter = 1.1) 7.280
    90 images/sec: 178.2 +/- 0.1 (jitter = 1.0) 7.270
    100 images/sec: 178.1 +/- 0.1 (jitter = 0.9) 7.268
    ----------------------------------------------------------------
    total images/sec: 178.02
    ----------------------------------------------------------------

    GoogLeNet BS128

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=128 --model=googlenet
    Step    Img/sec total_loss
    1 images/sec: 784.7 +/- 0.0 (jitter = 0.0) 7.104
    10 images/sec: 782.9 +/- 0.4 (jitter = 1.4) 7.104
    20 images/sec: 782.3 +/- 0.6 (jitter = 2.1) 7.092
    30 images/sec: 780.3 +/- 0.7 (jitter = 4.3) 7.087
    40 images/sec: 779.2 +/- 0.6 (jitter = 5.5) 7.067
    50 images/sec: 778.9 +/- 0.5 (jitter = 5.0) 7.092
    60 images/sec: 778.4 +/- 0.5 (jitter = 4.7) 7.050
    70 images/sec: 778.3 +/- 0.4 (jitter = 4.2) 7.073
    80 images/sec: 778.2 +/- 0.4 (jitter = 3.9) 7.077
    90 images/sec: 778.2 +/- 0.4 (jitter = 3.0) 7.079
    100 images/sec: 778.1 +/- 0.3 (jitter = 2.7) 7.066
    ----------------------------------------------------------------
    total images/sec: 777.65
    ----------------------------------------------------------------

    ResNet152 BS32

    python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=32 --model=resnet152
    Step    Img/sec total_loss
    1 images/sec: 116.5 +/- 0.0 (jitter = 0.0) 9.028
    10 images/sec: 116.3 +/- 0.1 (jitter = 0.2) 8.593
    20 images/sec: 116.2 +/- 0.1 (jitter = 0.3) 8.603
    30 images/sec: 116.0 +/- 0.1 (jitter = 0.4) 8.712
    40 images/sec: 115.8 +/- 0.1 (jitter = 0.5) 8.655
    50 images/sec: 115.7 +/- 0.1 (jitter = 0.6) 8.800
    60 images/sec: 115.7 +/- 0.1 (jitter = 0.6) 8.625
    70 images/sec: 115.5 +/- 0.1 (jitter = 0.6) 9.093
    80 images/sec: 115.5 +/- 0.1 (jitter = 0.6) 8.856
    90 images/sec: 115.4 +/- 0.1 (jitter = 0.6) 8.996
    100 images/sec: 115.3 +/- 0.1 (jitter = 0.6) 8.842
    ----------------------------------------------------------------
    total images/sec: 115.28
    ----------------------------------------------------------------

    A100 和V100 和 2080ti 性能对比:

    https://www.tonyisstark.com/383.html

  • 相关阅读:
    Soap 教程
    MAC mysql install
    PHP date
    MAC 终端terminal颜色
    MAC 终端颜色设置
    MAC brew软件安装
    PHP iconv函数
    Java----前端验证之验证码额实现
    Java---Ajax在Struts2框架的应用实例
    Java基础—标识符及命名规范
  • 原文地址:https://www.cnblogs.com/wangpg/p/13689472.html
Copyright © 2011-2022 走看看