项目 | 内容 |
---|---|
课程 | 人工智能实战2019 |
作业要求 | 第5次作业 |
课程目标 | 学习人工智能基础知识 |
本次作业对我的帮助 | 学习并练习应用线性二分类的知识 |
理论课程 | 二分类原理 |
一、作业要求
训练一个逻辑或门和逻辑与门
二、样本数据
1. 逻辑或门的样本数据
样本序号 | 1 | 2 | 3 | 4 |
---|---|---|---|---|
x1 | 0 | 0 | 1 | 1 |
x2 | 0 | 1 | 0 | 1 |
Y | 0 | 1 | 1 | 1 |
2. 逻辑与门的样本数据
样本序号 | 1 | 2 | 3 | 4 |
---|---|---|---|---|
x1 | 0 | 0 | 1 | 1 |
x2 | 0 | 1 | 0 | 1 |
Y | 0 | 0 | 0 | 1 |
三、关键公式
1. 分类函数
[A(z)=Sigmoid(z)=frac{1}{1+e^{-z}}
]
2. 二分类交叉熵损失函数
[J=-[Y ln A+(1-Y) ln (1-A)]
]
3. 使用方式
训练时,一个样本x经过神经网络的最后一层的矩阵运算结果作为输入z,经过Sigmoid函数后,输出一个[0,1]之间的预测值。对于标签值为1的样本数据,预测值越接近0,惩罚越大,反向传播的力度越大;反之同理
四、程序实现
import numpy as np
import matplotlib.pyplot as plt
import math
# 读取样本数据
def ReadData(logic):
if logic == "OR":
X = np.array([0, 0, 1, 1, 0, 1, 0, 1]).reshape(2, 4)
Y = np.array([0, 1, 1, 1]).reshape(1, 4)
elif logic == "AND":
X = np.array([0, 0, 1, 1, 0, 1, 0, 1]).reshape(2, 4)
Y = np.array([0, 0, 0, 1]).reshape(1, 4)
return X, Y
# 分类函数
def Sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
# 前向计算
def ForwardCalculationBatch(W, B, batch_X):
Z = np.dot(W, batch_X) + B
A = Sigmoid(Z)
return A
# 计算损失函数值,二分类交叉熵损失函数
def CheckLoss(W, B, X, Y):
m = X.shape[1]
A = ForwardCalculationBatch(W, B, X)
p1 = 1 - Y
p2 = np.log(1 - A)
p3 = np.log(A)
p4 = np.multiply(p1, p2)
p5 = np.multiply(Y, p3)
LOSS = np.sum(-(p4 + p5))
loss = LOSS / m
return loss
# 反向计算
def BackPropagationBatch(X, Y, A):
m = X.shape[1]
dZ = A - Y
dB = dZ.sum(axis=1, keepdims=True) / m
dW = np.dot(dZ, X.T) / m
return dW, dB
# 更新权重参数
def UpdateWeights(W, B, dW, dB, eta):
W = W - eta * dW
B = B - eta * dB
return W, B
# 训练
def train(X, Y):
num_example = X.shape[1]
num_feature = X.shape[0]
num_category = Y.shape[0]
eta = 0.5
max_epoch = 10000
loss = 5 # initialize loss (larger than 0)
error = 1e-3 # stop condition
w = np.zeros((num_category, num_feature))
b = np.zeros((num_category, 1))
for epoch in range(max_epoch):
print("epoch=%d" % epoch)
for i in range(num_example):
x = X[:, i].reshape(2, 1)
y = Y[:, i].reshape(1, 1)
z = ForwardCalculationBatch(w, b, x)
dW, dB = BackPropagationBatch(x, y, z)
w, b = UpdateWeights(w, b, dW, dB, eta)
# end for
loss = CheckLoss(w, b, X, Y)
#print(epoch, i, loss, w, b)
if math.isnan(loss):
break
if loss < error:
break
return w, b
# end for
# 显示结果
def ShowResult(W, B, X, Y, title):
# 根据w,b值画出分割线
w = -W[0, 0] / W[0, 1]
b = -B[0, 0] / W[0, 1]
x = np.array([0, 1])
y = w * x + b
plt.plot(x, y)
# 画出原始样本值
for i in range(X.shape[1]):
if Y[0, i] == 0:
plt.scatter(X[0, i], X[1, i], marker="o", c='b', s=64)
else:
plt.scatter(X[0, i], X[1, i], marker="^", c='r', s=64)
plt.axis([-0.1, 1.1, -0.1, 1.1])
plt.title(title)
plt.show()
# 测试
def Test(W, B, logic):
n1 = input("input number one:")
x1 = float(n1)
n2 = input("input number two:")
x2 = float(n2)
a = ForwardCalculationBatch(W, B, np.array([x1, x2]).reshape(2, 1))
print(a)
if (logic == "OR"):
y = x1 or x2
if (logic == "AND"):
y = x1 and x2
if np.abs(a - y) < 1e-2:
print("True")
else:
print("False")
# 主程序
if __name__ == '__main__':
logic = "OR"
X, Y = ReadData(logic)
w, b = train(X, Y)
print("w=", w)
print("b=", b)
ShowResult(w, b, X, Y, logic)
while True:
Test(w, b, logic)
五、运行结果
epoch=4520
w= [[13.13318012 13.13406338]]
b= [[-6.10742937]]
Qt: Untested Windows version 10.0 detected!
input number one:0
input number two:1
[[0.99911287]]
True
input number one:1
input number two:0
[[0.99911209]]
True
input number one:0
input number two:0
[[0.00222132]]
True
input number one:1
input number two:1
[[1.]]
True
epoch=8504
w= [[13.15361034 13.15287496]]
b= [[-19.89698044]]
Qt: Untested Windows version 10.0 detected!
input number one:0
input number two:1
[[0.00117642]]
True
input number one:1
input number two:0
[[0.00117728]]
True
input number one:0
input number two:0
[[2.28481577e-09]]
True
input number one:1
input number two:1
[[0.99835687]]
True