zoukankan      html  css  js  c++  java
  • 人工智能实战2019

    项目 内容
    课程 人工智能实战2019
    作业要求 第5次作业
    课程目标 学习人工智能基础知识
    本次作业对我的帮助 学习并练习应用线性二分类的知识
    理论课程 二分类原理

    一、作业要求


    训练一个逻辑或门和逻辑与门

    二、样本数据


    1. 逻辑或门的样本数据

    样本序号 1 2 3 4
    x1 0 0 1 1
    x2 0 1 0 1
    Y 0 1 1 1

    2. 逻辑与门的样本数据

    样本序号 1 2 3 4
    x1 0 0 1 1
    x2 0 1 0 1
    Y 0 0 0 1

    三、关键公式


    1. 分类函数

    [A(z)=Sigmoid(z)=frac{1}{1+e^{-z}} ]

    2. 二分类交叉熵损失函数

    [J=-[Y ln A+(1-Y) ln (1-A)] ]

    3. 使用方式

    训练时,一个样本x经过神经网络的最后一层的矩阵运算结果作为输入z,经过Sigmoid函数后,输出一个[0,1]之间的预测值。对于标签值为1的样本数据,预测值越接近0,惩罚越大,反向传播的力度越大;反之同理

    四、程序实现


    import numpy as np
    import matplotlib.pyplot as plt
    import math
    
    
    # 读取样本数据
    def ReadData(logic):
        if logic == "OR":
            X = np.array([0, 0, 1, 1, 0, 1, 0, 1]).reshape(2, 4)
            Y = np.array([0, 1, 1, 1]).reshape(1, 4)
        elif logic == "AND":
            X = np.array([0, 0, 1, 1, 0, 1, 0, 1]).reshape(2, 4)
            Y = np.array([0, 0, 0, 1]).reshape(1, 4)
        return X, Y
    
    
    # 分类函数
    def Sigmoid(x):
        s = 1 / (1 + np.exp(-x))
        return s
    
    
    # 前向计算
    def ForwardCalculationBatch(W, B, batch_X):
        Z = np.dot(W, batch_X) + B
        A = Sigmoid(Z)
        return A
    
    
    # 计算损失函数值,二分类交叉熵损失函数
    def CheckLoss(W, B, X, Y):
        m = X.shape[1]
        A = ForwardCalculationBatch(W, B, X)
    
        p1 = 1 - Y
        p2 = np.log(1 - A)
        p3 = np.log(A)
    
        p4 = np.multiply(p1, p2)
        p5 = np.multiply(Y, p3)
    
        LOSS = np.sum(-(p4 + p5))
        loss = LOSS / m
        return loss
    
    
    # 反向计算
    def BackPropagationBatch(X, Y, A):
        m = X.shape[1]
        dZ = A - Y
        dB = dZ.sum(axis=1, keepdims=True) / m
        dW = np.dot(dZ, X.T) / m
        return dW, dB
    
    
    # 更新权重参数
    def UpdateWeights(W, B, dW, dB, eta):
        W = W - eta * dW
        B = B - eta * dB
        return W, B
    
    
    # 训练
    def train(X, Y):
    
        num_example = X.shape[1]
        num_feature = X.shape[0]
        num_category = Y.shape[0]
        eta = 0.5
        max_epoch = 10000
        loss = 5  # initialize loss (larger than 0)
        error = 1e-3  # stop condition
        w = np.zeros((num_category, num_feature))
        b = np.zeros((num_category, 1))
    
        for epoch in range(max_epoch):
            print("epoch=%d" % epoch)
            for i in range(num_example):
                x = X[:, i].reshape(2, 1)
                y = Y[:, i].reshape(1, 1)
                z = ForwardCalculationBatch(w, b, x)
                dW, dB = BackPropagationBatch(x, y, z)
                w, b = UpdateWeights(w, b, dW, dB, eta)
            # end for
            loss = CheckLoss(w, b, X, Y)
            #print(epoch, i, loss, w, b)
            if math.isnan(loss):
                break
            if loss < error:
                break
        return w, b
        # end for
    
    
    # 显示结果
    def ShowResult(W, B, X, Y, title):
        # 根据w,b值画出分割线
        w = -W[0, 0] / W[0, 1]
        b = -B[0, 0] / W[0, 1]
        x = np.array([0, 1])
        y = w * x + b
        plt.plot(x, y)
    
        # 画出原始样本值
        for i in range(X.shape[1]):
            if Y[0, i] == 0:
                plt.scatter(X[0, i], X[1, i], marker="o", c='b', s=64)
            else:
                plt.scatter(X[0, i], X[1, i], marker="^", c='r', s=64)
        plt.axis([-0.1, 1.1, -0.1, 1.1])
        plt.title(title)
        plt.show()
    
    
    # 测试
    def Test(W, B, logic):
        n1 = input("input number one:")
        x1 = float(n1)
        n2 = input("input number two:")
        x2 = float(n2)
        a = ForwardCalculationBatch(W, B, np.array([x1, x2]).reshape(2, 1))
        print(a)
        if (logic == "OR"):
            y = x1 or x2
        if (logic == "AND"):
            y = x1 and x2
        if np.abs(a - y) < 1e-2:
            print("True")
        else:
            print("False")
    
    
    # 主程序
    if __name__ == '__main__':
    
        logic = "OR"
        X, Y = ReadData(logic)
        w, b = train(X, Y)
    
        print("w=", w)
        print("b=", b)
        ShowResult(w, b, X, Y, logic)
        while True:
            Test(w, b, logic)
    

    五、运行结果


    A4sEGj.png

    epoch=4520
    w= [[13.13318012 13.13406338]]
    b= [[-6.10742937]]
    Qt: Untested Windows version 10.0 detected!
    input number one:0
    input number two:1
    [[0.99911287]]
    True
    input number one:1
    input number two:0
    [[0.99911209]]
    True
    input number one:0
    input number two:0
    [[0.00222132]]
    True
    input number one:1
    input number two:1
    [[1.]]
    True
    

    A4sMZT.png

    epoch=8504
    w= [[13.15361034 13.15287496]]
    b= [[-19.89698044]]
    Qt: Untested Windows version 10.0 detected!
    input number one:0
    input number two:1
    [[0.00117642]]
    True
    input number one:1
    input number two:0
    [[0.00117728]]
    True
    input number one:0
    input number two:0
    [[2.28481577e-09]]
    True
    input number one:1
    input number two:1
    [[0.99835687]]
    True
    
  • 相关阅读:
    网页定位导航特效
    学习笔记(一) HTML+CSS基础课程
    《javascript dom编程艺术》笔记(二)——美术馆示例
    《javascript dom编程艺术》笔记(一)——优雅降级、向后兼容、多个函数绑定onload函数
    javascript之事件处理
    将Emmet安装到到 Sublime text 3?
    如何将Emmet安装到到 Sublime text 3?
    Web前端研发工程师编程能力飞升之路
    childNodes 节点数量问题说明
    gerrit + ldap + phpldapadmin docker部署
  • 原文地址:https://www.cnblogs.com/wangshihong/p/10663942.html
Copyright © 2011-2022 走看看